全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Role of TNPO3 in HIV-1 Replication

DOI: 10.1155/2012/868597

Full-Text   Cite this paper   Add to My Lib

Abstract:

TNPO3, transportin-SR2 or Tnp3, a member of the karyopherin β superfamily of proteins, is important for the ability of human immunodeficiency virus (HIV-1) to achieve productive infection, as TNPO3 depletion in human cells leads to a dramatic reduction of infection. Here we describe and discuss recent findings suggesting that TNPO3 assists HIV-1 replication in the nucleus and in fact that TNPO3 may assist PIC maturation in the nucleus. In addition, the viral determinant for the requirement of TNPO3 in HIV-1 infection is discussed. This paper summarizes the most significant recent discoveries about this important host factor and its role in HIV-1 replication. 1. Introduction The influence of the physiological state of cells on retroviral replication has been known since Temin and Rubin demonstrated that stopping cell division by X-rays or UV light prevents Rous sarcoma virus replication [1]. Subsequent research established the relationship between cell cycle stage and retroviral infection, revealing that retroviruses do not all have the same requirements for productive infection [2, 3]. For example, -retroviruses such as murine leukemia virus (MLV) require the host cell to pass through mitosis for efficient infection [4, 5]. The MLV titer decreases at least 10-fold when infecting cells that are arrested in a non-dividing state. By contrast, lentiviruses such as HIV-1 show no difference in productive infection in dividing versus nondividing cells [6]. This evidence suggests that lentiviruses have developed specific mechanisms for the infection of non-dividing cells. The ability of HIV-1 to infect non-dividing cells has been attributed to its capacity to transport the preintegration complex (PIC) to the nucleus [7, 8]. Translocation of the HIV-1 PIC into the nucleus is not a simple process as the PIC is a large complex that contains integrase, matrix, capsid, Vpr, and the viral DNA [7, 9, 10]. Because of its large size, it is unlikely that the PIC enters the nucleus by passive diffusion [11]. On the contrary, HIV-1 PIC translocation into the nucleus must be an active process, possibly making use of nuclear localization signals [12]. Several viral components of the PIC such as matrix, Vpr, integrase, and the central DNA flap have been proposed to be directly involved in PIC transport into the nucleus. However, evidence in the literature both supports and refutes a role for these different components in nuclear translocation [13, 14]. Although only small amounts of capsid can be found in biochemically purified HIV-1 PICs [7, 12, 15, 16], evidence has shown

References

[1]  H. Rubin and H. M. Temin, “A radiological study of cell-virus interaction in the rous sarcoma,” Virology, vol. 7, no. 1, pp. 75–91, 1959.
[2]  R. A. Katz, J. G. Greger, and A. M. Skalka, “Effects of cell cycle status on early events in retroviral replication,” Journal of Cellular Biochemistry, vol. 94, no. 5, pp. 880–889, 2005.
[3]  M. Yamashita and M. Emerman, “Retroviral infection of non-dividing cells: old and new perspectives,” Virology, vol. 344, no. 1, pp. 88–93, 2006.
[4]  P. F. Lewis and M. Emerman, “Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus,” Journal of Virology, vol. 68, no. 1, pp. 510–516, 1994.
[5]  T. Roe, T. C. Reynolds, G. Yu, and P. O. Brown, “Integration of murine leukemia virus DNA depends on mitosis,” The EMBO Journal, vol. 12, no. 5, pp. 2099–2108, 1993.
[6]  P. Lewis, M. Hensel, and M. Emerman, “Human immunodeficiency virus infection of cells arrested in the cell cycle,” The EMBO Journal, vol. 11, no. 8, pp. 3053–3058, 1992.
[7]  M. D. Miller, C. M. Farnet, and F. D. Bushman, “Human immunodeficiency virus type 1 preintegration complexes: Studies of organization and composition,” Journal of Virology, vol. 71, no. 7, pp. 5382–5390, 1997.
[8]  Y. Suzuki and R. Craigie, “The road to chromatin—nuclear entry of retroviruses,” Nature Reviews Microbiology, vol. 5, no. 3, pp. 187–196, 2007.
[9]  B. Bowerman, P. O. Brown, J. M. Bishop, and H. E. Varmus, “A nucleoprotein complex mediates the integration of retroviral DNA,” Genes & development, vol. 3, no. 4, pp. 469–478, 1989.
[10]  M. V. Nermut and A. Fassati, “Structural analyses of purified human immunodeficiency virus type 1 intracellular reverse transcription complexes,” Journal of Virology, vol. 77, no. 15, pp. 8196–8206, 2003.
[11]  I. W. Mattaj and L. Englmeier, “Nucleocytoplasmic transport: the soluble phase,” Annual Review of Biochemistry, vol. 67, pp. 265–306, 1998.
[12]  M. I. Bukrinsky, N. Sharova, T. L. McDonald, T. Pushkarskaya, W. G. Tarpley, and M. Stevenson, “Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 13, pp. 6125–6129, 1993.
[13]  J. de Rijck, L. Vandekerckhove, F. Christ, and Z. Debyser, “Lentiviral nuclear import: a complex interplay between virus and host,” BioEssays, vol. 29, no. 5, pp. 441–451, 2007.
[14]  A. Fassati, “HIV infection of non-dividing cells: a divisive problem,” Retrovirology, vol. 3, article no. 74, 2006.
[15]  A. Fassati and S. P. Goff, “Characterization of intracellular reverse transcription complexes of human immunodeficiency virus type 1,” Journal of Virology, vol. 75, no. 8, pp. 3626–3635, 2001.
[16]  S. Iordanskiy, R. Berro, M. Altieri, F. Kashanchi, and M. Bukrinsky, “Intracytoplasmic maturation of the human immunodeficiency virus type 1 reverse transcription complexes determines their capacity to integrate into chromatin,” Retrovirology, vol. 3, article 4, 2006.
[17]  M. Yamashita and M. Emerman, “Capsid is a dominant determinant of retrovirus infectivity in nondividing cells,” Journal of Virology, vol. 78, no. 11, pp. 5670–5678, 2004.
[18]  M. Yamashita, O. Perez, T. J. Hope, and M. Emerman, “Evidence for direct involvement of the capsid protein in HIV infection of nondividing cells,” PLoS Pathogens, vol. 3, no. 10, pp. 1502–1510, 2007.
[19]  K. Lee, Z. Ambrose, T. D. Martin et al., “Flexible use of nuclear import pathways by HIV-1,” Cell Host and Microbe, vol. 7, no. 3, pp. 221–233, 2010.
[20]  A. Fassati, D. G?rlich, I. Harrison, L. Zaytseva, and J. M. Mingot, “Nuclear import of HIV-1 intracellular reverse transcription complexes is mediated by importin 7,” The EMBO Journal, vol. 22, no. 14, pp. 3675–3685, 2003.
[21]  L. Zaitseva, P. Cherepanov, L. Leyens, S. J. Wilson, J. Rasaiyaah, and A. Fassati, “HIV-1 exploits importin 7 to maximize nuclear import of its DNA genome,” Retrovirology, vol. 6, article 11, 2009.
[22]  Z. Ao, G. Huang, H. Yao et al., “Interaction of human immunodeficiency virus type 1 integrase with cellular nuclear import receptor importin 7 and its impact on viral replication,” Journal of Biological Chemistry, vol. 282, no. 18, pp. 13456–13467, 2007.
[23]  Z. Ao, K. Danappa Jayappa, B. Wang et al., “Importin α3 interacts with HIV-1 integrase and contributes to HIV-1 nuclear import and replication,” Journal of Virology, vol. 84, no. 17, pp. 8650–8663, 2010.
[24]  P. Gallay, T. Hope, D. Chin, and D. Trono, “HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 18, pp. 9825–9830, 1997.
[25]  A. C. Hearps and D. A. Jans, “HIV-1 integrase is capable of targeting DNA to the nucleus via an Importin α/β-dependent mechanism,” Biochemical Journal, vol. 398, no. 3, pp. 475–484, 2006.
[26]  C. L. Woodward, S. Prakobwanakit, S. Mosessian, and S. A. Chow, “Integrase interacts with nucleoporin NUP153 to mediate the nuclear import of human immunodeficiency virus type 1,” Journal of Virology, vol. 83, no. 13, pp. 6522–6533, 2009.
[27]  K. A. Matreyek and A. Engelman, “The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection is determined by the viral capsid,” Journal of Virology, vol. 85, no. 15, pp. 7818–7827, 2011.
[28]  K. E. Ocwieja, T. L. Brady, K. Ronen et al., “HIV integration targeting: a pathway involving transportin-3 and the nuclear pore protein RanBP2,” PLoS Pathogens, vol. 7, no. 3, Article ID e1001313, 2011.
[29]  F. Christ, W. Thys, J. de Rijck et al., “Transportin-SR2 imports HIV into the nucleus,” Current Biology, vol. 18, no. 16, pp. 1192–1202, 2008.
[30]  A. L. Brass, D. M. Dykxhoorn, Y. Benita et al., “Identification of host proteins required for HIV infection through a functional genomic screen,” Science, vol. 319, no. 5865, pp. 921–926, 2008.
[31]  L. Krishnan, K. A. Matreyek, I. Oztop et al., “The requirement for cellular transportin 3 (TNPO3 or TRN-SR2) during infection maps to human immunodeficiency virus type 1 capsid and not integrase,” Journal of Virology, vol. 84, no. 1, pp. 397–406, 2010.
[32]  W. Thys, S. de Houwer, J. Demeulemeester et al., “Interplay between HIV entry and transportin-SR2 dependency,” Retrovirology, vol. 8, article no. 7, 2011.
[33]  A. Levin, Z. Hayouka, A. Friedler, and A. Loyter, “Transportin 3 and importin α are required for effective nuclear import of HIV-1 integrase in virus-infected cells,” Nucleus, vol. 1, no. 5, pp. 422–431, 2010.
[34]  R. K?nig, Y. Zhou, D. Elleder et al., “Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication,” Cell, vol. 135, no. 1, pp. 49–60, 2008.
[35]  H. Zhou, M. Xu, Q. Huang et al., “Genome-scale RNAi screen for host factors required for HIV replication,” Cell Host and Microbe, vol. 4, no. 5, pp. 495–504, 2008.
[36]  L. Zhou, E. Sokolskaja, C. Jolly, W. James, S. A. Cowley, and A. Fassati, “Transportin 3 promotes a nuclear maturation step required for efficient HIV-1 integration,” PLoS Pathogens, vol. 7, no. 8, Article ID e1002194, 2011.
[37]  J. C. Valle-Casuso, F. di Nunzio, Y. Yang et al., “TNPO3 is required for HIV-1 replication after nuclear import but prior to integration and binds the HIV-1 core,” Journal of Virology, vol. 86, no. 10, pp. 5931–5936, 2012.
[38]  M. C. Lai, R. I. Lin, and W. Y. Tarn, “Transportin-SR2 mediates nuclear import of phosphorylated SR proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 18, pp. 10154–10159, 2001.
[39]  M. C. Lai, R. I. Lin, S. Y. Huang, C. W. Tsai, and W. Y. Tarn, “A human importin-β family protein, transportin-SR2, interacts with the phosphorylated RS domain of SR proteins,” Journal of Biological Chemistry, vol. 275, no. 11, pp. 7950–7957, 2000.
[40]  M. C. Lai, H. W. Kuo, W. C. Chang, and W. Y. Tarn, “A novel splicing regulator shares a nuclear import pathway with SR proteins,” The EMBO Journal, vol. 22, no. 6, pp. 1359–1369, 2003.
[41]  T. I. Moy and P. A. Silver, “Nuclear export of the small ribosomal subunit requires the Ran-GTPase cycle and certain nucleoporins,” Genes and Development, vol. 13, no. 16, pp. 2118–2133, 1999.
[42]  E. C. Logue, K. T. Taylor, P. H. Goff, and N. R. Landau, “The cargo-binding domain of transportin 3 is required for lentivirus nuclear import,” Journal of Virology, vol. 85, no. 24, pp. 12950–12961, 2011.
[43]  A. Engelman, “In vivo analysis of retroviral integrase structure and function,” Advances in Virus Research, vol. 52, pp. 411–426, 1999.
[44]  A. de Iaco and J. Luban, “Inhibition of HIV-1 infection by TNPO3 depletion is determined by capsid and detectable after viral cDNA enters the nucleus,” Retrovirology, vol. 8, article 98, 2011.
[45]  B. K. Ganser, S. Li, V. Y. Klishko, J. T. Finch, and W. I. Sundquist, “Assembly and analysis of conical models for the HIV-1 core,” Science, vol. 283, no. 5398, pp. 80–83, 1999.
[46]  S. L. Butler, M. S. T. Hansen, and F. D. Bushman, “A quantitative assay for HIV DNA integration in vivo,” Nature Medicine, vol. 7, no. 5, pp. 631–634, 2001.
[47]  C. D. Pauza, “Two bases are deleted from the termini of HIV-1 linear DNA during integrative recombination,” Virology, vol. 179, no. 2, pp. 886–889, 1990.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413