全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ASGR1 and ASGR2, the Genes that Encode the Asialoglycoprotein Receptor (Ashwell Receptor), Are Expressed in Peripheral Blood Monocytes and Show Interindividual Differences in Transcript Profile

DOI: 10.1155/2012/283974

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. The asialoglycoprotein receptor (ASGPR) is a hepatic receptor that mediates removal of potentially hazardous glycoconjugates from blood in health and disease. The receptor comprises two proteins, asialoglycoprotein receptor 1 and 2 (ASGR1 and ASGR2), encoded by the genes ASGR1 and ASGR2. Design and Methods. Using reverse transcription amplification (RT-PCR), expression of ASGR1 and ASGR2 was investigated in human peripheral blood monocytes. Results. Monocytes were found to express ASGR1 and ASGR2 transcripts. Correctly spliced transcript variants encoding different isoforms of ASGR1 and ASGR2 were present in monocytes. The profile of transcript variants from both ASGR1 and ASGR2 differed among individuals. Transcript expression levels were compared with the hepatocyte cell line HepG2 which produces high levels of ASGPR. Monocyte transcripts were 4 to 6 orders of magnitude less than in HepG2 but nonetheless readily detectable using standard RT-PCR. The monocyte cell line THP1 gave similar results to monocytes harvested from peripheral blood, indicating it may provide a suitable model system for studying ASGPR function in this cell type. Conclusions. Monocytes transcribe and correctly process transcripts encoding the constituent proteins of the ASGPR. Monocytes may therefore represent a mobile pool of the receptor, capable of reaching sites remote from the liver. 1. Introduction The asialoglycoprotein receptor (ASGPR) (also known as the Ashwell receptor) mediates the capture and endocytosis of galactose- (Gal) and N-acetylgalactosamine- (GalNAc) terminating glycoproteins. The relevance of this function has been the subject of much debate; the primary role may be the removal of potentially hazardous glycoconjugates arising from normal tissue turnover, tissue injury, disease, and other causes [1]. Studies using knock-out mice have provided evidence for direct involvement of the ASGPR in removal of abnormally sialylated plasma glycoproteins. Mice lacking the sialyltransferase ST3Gal4 showed prolonged bleeding which was attributed to ASGPR-mediated clearance of at least one plasma hemostatic component, von Willebrand factor (VWF), that showed decreased sialylation [2]. Findings in mice lacking the ASGPR demonstrated that, during sepsis, the receptor removed components of hemostasis (VWF and platelets) that had been desialylated by bacterial neuraminidase and thereby allowed hemostatic adaptation that moderated disseminated intravascular coagulation and improved host survival [3]. The ASGPR may therefore be poised for rapid clearance of plasma

References

[1]  P. H. Weigel and J. H. N. Yik, “Glycans as endocytosis signals: the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors,” Biochimica et Biophysica Acta, vol. 1572, no. 2-3, pp. 341–363, 2002.
[2]  L. G. Ellies, D. Ditto, G. G. Levy et al., “Sialyltransferase ST3Gal-IV operates as a dominant modifier of hemostasis by concealing asialoglycoprotein receptor ligands,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 15, pp. 10042–10047, 2002.
[3]  P. K. Grewal, S. Uchiyama, D. Ditto et al., “The Ashwell receptor mitigates the lethal coagulopathy of sepsis,” Nature Medicine, vol. 14, no. 6, pp. 648–655, 2008.
[4]  J. E. Zijderhand-Bleekemolen, A. L. Schwartz, J. W. Slot, G. J. Strous, and H. J. Geuze, “Ligand- and weak base-induced redistribution of asialoglycoprotein receptors in hepatoma cells,” Journal of Cell Biology, vol. 104, no. 6, pp. 1647–1654, 1987.
[5]  M. Ii, H. Kurata, N. Itoh, I. Yamashina, and T. Kawasaki, “Molecular cloning and sequence analysis of cDNA encoding the macrophage lectin specific for galactose and N-acetylgalactosamine,” The Journal of Biological Chemistry, vol. 265, no. 19, pp. 11295–11298, 1990.
[6]  J. Z. Mu, R. J. Fallon, P. E. Swanson, S. B. Carroll, M. Danaher, and D. H. Alpers, “Expression of an endogenous asialoglycoprotein receptor in a human intestinal epithelial cell line, Caco-2,” Biochimica et Biophysica Acta, vol. 1222, no. 3, pp. 483–491, 1994.
[7]  R. S. Monroe and B. E. Huber, “The major form of the murine asialoglycoprotein receptor: cDNA sequence and expression in liver, testis and epididymis,” Gene, vol. 148, no. 2, pp. 237–244, Erratum in Gene, vol. 161, no. 2, pp. 307, 1995.
[8]  F. Pacifico, D. Liguoro, R. Acquaviva, S. Formisano, and E. Consiglio, “Thyroglobulin binding and TSH regulation of the RHL-1 subunit of the asialoglycoprotein receptor in rat thyroid,” Biochimie, vol. 81, no. 5, pp. 493–496, 1999.
[9]  P. H. Weigel, “Galactosyl and N-acetylgalactosaminyl homeostasis: a function for mammalian asialoglycoprotein receptors,” BioEssays, vol. 16, no. 7, pp. 519–524, 1994.
[10]  C. Plank, K. Zatloukal, M. Cotten, K. Mechtler, and E. Wagner, “Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand,” Bioconjugate Chemistry, vol. 3, no. 6, pp. 533–539, 1992.
[11]  D. B. Rozema, D. L. Lewis, D. H. Wakefield et al., “Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 32, pp. 12982–12987, 2007.
[12]  J. Wu, M. H. Nantz, and M. A. Zern, “Targeting hepatocytes for drug and gene delivery: emerging novel approaches and applications,” Frontiers in Bioscience, vol. 7, pp. d717–725, 2002.
[13]  J. Bischoff and H. F. Lodish, “Two asialoglycoprotein receptor polypeptides in human hepatoma cells,” The Journal of Biological Chemistry, vol. 262, no. 24, pp. 11825–11832, 1987.
[14]  National Centre for Biotechnology Information Gene Database, “Asialoglycoprotein receptor 1 [homo sapiens],” http://www.ncbi.nlm.nih.gov/gene/432.
[15]  National Centre for Biotechnology Information Gene Database, “Asialoglycoprotein receptor 2 [homo sapiens],” http://www.ncbi.nlm.nih.gov/gene/433.
[16]  Y. I. Henis, Z. Katzir, M. A. Shia, and H. F. Lodish, “Oligomeric structure of the human asialoglycoprotein receptor: nature and stoichiometry of mutual complexes containing H1 and H2 polypeptides assessed by fluorescence photobleaching recovery,” Journal of Cell Biology, vol. 111, no. 4, pp. 1409–1418, 1990.
[17]  J. Liu, B. Hu, Y. Yang et al., “A new splice variant of the major subunit of human asialoglycoprotein receptor encodes a secreted form in hepatocytes,” PLoS ONE, vol. 5, no. 9, article e12934, 2010.
[18]  S. Tolchinsky, M. H. Yuk, M. Ayalon, H. F. Lodish, and G. Z. Lederkremer, “Membrane-bound versus secreted forms of human asialoglycoprotein receptor subunits: role of a juxtamembrane pentapeptide,” The Journal of Biological Chemistry, vol. 271, no. 24, pp. 14496–14503, 1996.
[19]  H. Yago, Y. Kohgo, J. Kato, N. Watanabe, S. Sakamaki, and Y. Niitsu, “Detection and quantification of soluble asialoglycoprotein receptor in human serum,” Hepatology, vol. 21, no. 2, pp. 383–388, 1995.
[20]  National Centre for Biotechnology Information, http://www.ncbi.nlm.nih.gov/.
[21]  Medical Research Council, http://www.mrc.ac.uk/Ourresearch/Ethicsresearchguidance/Useofhumantissue/index.htm.
[22]  B. B. Knowles, C. C. Howe, and D. P. Aden, “Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen,” Science, vol. 209, no. 4455, pp. 497–499, 1980.
[23]  S. Tsuchiya, M. Yamabe, and Y. Yamaguchi, “Establishment and characterization of a human acute monocytic leukemia cell line (THP-1),” International Journal of Cancer, vol. 26, no. 2, pp. 171–176, 1980.
[24]  A. L. Schwartz, S. E. Fridovich, B. B. Knowles, and H. F. Lodish, “Characterization of the asialoglycoprotein receptor in a continuous hepatoma line,” The Journal of Biological Chemistry, vol. 256, no. 17, pp. 8878–8881, 1981.
[25]  S. Keeney, “Use of robotics in high-throughput DNA sequencing,” Methods in Molecular Biology, vol. 688, pp. 227–237, 2011.
[26]  B. Budowle and R. C. Allen, “Discontinuous polyacrylamide gel electrophoresis of DNA fragments,” in Protocols in Human Molecular Genetics, Methods in Molecular Biology, C. G. Mathew, Ed., vol. 9, Humana Press, Clifton, NJ, USA, 1991.
[27]  T. Lion, “Current recommendations for positive controls in RT-PCR assays,” Leukemia, vol. 15, no. 7, pp. 1033–1037, 2001.
[28]  National Centre for Biotechnology Information dbSNP Short Genetic Variations, http://www.ncbi.nlm.nih.gov/SNP/.
[29]  E. V. Groman, P. M. Enriquez, C. Jung, and L. Josephson, “Arabinogalactan for hepatic drug delivery,” Bioconjugate Chemistry, vol. 5, no. 6, pp. 547–556, 1994.
[30]  Y. C. Lee, R. R. Townsend, M. R. Hardy et al., “Binding of synthetic oligosaccharides to the hepatic Gal/GalNAc lectin. Dependence on fine structural features,” The Journal of Biological Chemistry, vol. 258, no. 1, pp. 199–202, 1983.
[31]  L. Fiume, G. Di Stefano, C. Busi et al., “Liver targeting of antiviral nucleoside analogues through the asialoglycoprotein receptor,” Journal of Viral Hepatitis, vol. 4, no. 6, pp. 363–370, 1997.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133