To accomplish their life cycle, lentiviruses make use of host proteins, the so-called cellular cofactors. Interactions between host cell and viral proteins during early stages of lentiviral infection provide attractive new antiviral targets. The insertion of lentiviral cDNA in a host cell chromosome is a step of no return in the replication cycle, after which the host cell becomes a permanent carrier of the viral genome and a producer of lentiviral progeny. Integration is carried out by integrase (IN), an enzyme playing also an important role during nuclear import. Plenty of cellular cofactors of HIV-1 IN have been proposed. To date, the lens epithelium-derived growth factor (LEDGF/p75) is the best studied cofactor of HIV-1 IN. Moreover, small molecules that block the LEDGF/p75-IN interaction have recently been developed for the treatment of HIV infection. The nuclear import factor transportin-SR2 (TRN-SR2) has been proposed as another interactor of HIV IN-mediating nuclear import of the virus. Using both proteins as examples, we will describe approaches to be taken to identify and validate novel cofactors as new antiviral targets. Finally, we will highlight recent advances in the design and the development of small-molecule inhibitors binding to the LEDGF/p75-binding pocket in IN (LEDGINs). 1. Introduction: Cofactors of Integration as Potential Antiviral Targets Infection with the human immunodeficiency virus type 1 (HIV-1) remains a substantial public health as well as a socioeconomic problem worldwide [1]. Although highly active antiretroviral therapy (HAART) effectively halts HIV replication and profoundly increases survival of patients, it has not been possible yet to achieve a cure. Interruption of HAART typically results in a rebound of virus replication. This is primarily due to the fact that HIV has evolved mechanisms to escape from the continuous immune surveillance in a small pool of latently infected cells that are not susceptible to drug therapy. These latently infected cells reside in reservoirs where the distribution of antiretroviral (ARV) drugs is extremely variable and often lower than the expected maximal inhibitory concentration (for recent reviews see [2–4]). Moreover, the rapid replication rate and the generation of an extensive genetic diversity fuel the emergence of drug-resistant viral strains resulting in treatment failure [5, 6]. Therefore, there is a continuous demand to search for novel and better ARVs for a better control of the HIV pandemic with the hope to eventually induce permanent remission of the disease. HIV relies
References
[1]
UNAIDS, “Report on the global AIDS epidemic. Geneva, UNAIDS,” 2010, http://www.unaids.org/en/KnowledgeCentre/HIVData/GlobalReport/2008.
[2]
S. Moir, T. W. Chun, and A. S. Fauci, “Pathogenic mechanisms of HIV disease,” Annual Review of Pathology, vol. 6, pp. 223–248, 2011.
[3]
S. K. Choudhary and D. M. Margolis, “Curing HIV: pharmacologic approaches to target HIV-1 Latency,” Annual Review of Pharmacology and Toxicology, vol. 51, pp. 397–418, 2011.
[4]
D. M. Margolis, “Eradication therapies for HIV infection: time to begin again,” AIDS Research and Human Retroviruses, vol. 27, no. 4, pp. 347–353, 2011.
[5]
R. Nájera, E. Delgado, L. Pérez-Alvarez, and M. M. Thomson, “Genetic recombination and its role in the development of the HIV-1 pandemic,” AIDS, vol. 16, no. 4, pp. S3–S16, 2002.
[6]
A. Rambaut, D. Posada, K. A. Crandall, and E. C. Holmes, “The causes and consequences of HIV evolution,” Nature Reviews Genetics, vol. 5, no. 1, pp. 52–61, 2004.
[7]
B. Van Maele, K. Busschots, L. Vandekerckhove, F. Christ, and Z. Debyser, “Cellular co-factors of HIV-1 integration,” Trends in Biochemical Sciences, vol. 31, no. 2, pp. 98–105, 2006.
[8]
S. J?ger, P. Cimermancic, N. Gulbahce et al., “Global landscape of HIV-human protein complexes,” Nature, vol. 481, no. 7381, pp. 365–370, 2011.
[9]
T. Berg, “Modulation of protein-protein interactions with small organic molecules,” Angewandte Chemie, vol. 42, no. 22, pp. 2462–2481, 2003.
[10]
J. A. Wells and C. L. McClendon, “Reaching for high-hanging fruit in drug discovery at protein-protein interfaces,” Nature, vol. 450, no. 7172, pp. 1001–1009, 2007.
[11]
M. R. Arkin and J. A. Wells, “Small-molecule inhibitors of protein-protein interactions: progressing towards the dream,” Nature Reviews Drug Discovery, vol. 3, no. 4, pp. 301–317, 2004.
[12]
E. De Clercq, “HIV life cycle: targets for anti-HIV agents,” in HIV-1 Integrase: Mechanism and Inhibitor Design, N. Neamati, Ed., pp. 1–14, John Wiley & Sons, Hoboken, NJ, USA, 2011.
[13]
R. K?nig, Y. Zhou, D. Elleder et al., “Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication,” Cell, vol. 135, no. 1, pp. 49–60, 2008.
[14]
L. Houzet and K. T. Jeang, “Genome-Wide screening using RNA interference to study host factors in viral replication and pathogenesis,” Experimental Biology and Medicine, vol. 236, no. 8, pp. 962–967, 2011.
[15]
P. Dorr, M. Westby, S. Dobbs et al., “Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 11, pp. 4721–4732, 2005.
[16]
S. Sayana and H. Khanlou, “Maraviroc: a new CCR5 antagonist,” Expert Review of Anti-Infective Therapy, vol. 7, no. 1, pp. 9–19, 2009.
[17]
K. Busschots, J. De Rijck, F. Christ, and Z. Debyser, “In search of small molecules blocking interactions between HIV proteins and intracellular cofactors,” Molecular BioSystems, vol. 5, no. 1, pp. 21–31, 2009.
[18]
C. S. Adamson and E. O. Freed, “Novel approaches to inhibiting HIV-1 replication,” Antiviral Research, vol. 85, no. 1, pp. 119–141, 2010.
[19]
W. C. Greene, Z. Debyser, Y. Ikeda et al., “Novel targets for HIV therapy,” Antiviral Research, vol. 80, no. 3, pp. 251–265, 2008.
[20]
A. P. Rice and R. E. Sutton, “Targeting protein-protein interactions for HIV therapeutics,” Future HIV Therapy, vol. 1, no. 4, pp. 369–385, 2007.
[21]
A. Hombrouck, J. De Rijck, J. Hendrix et al., “Virus evolution reveals an exclusive role for LEDGF/p75 in chromosomal tethering of HIV,” PLoS Pathogens, vol. 3, no. 3, Article ID e47, 2007.
[22]
Y. Luo and M. A. Muesing, “Prospective strategies for targeting HIV-1 integrase function,” Future Medicinal Chemistry, vol. 2, no. 7, pp. 1055–1060, 2010.
[23]
F. D. Bushman, T. Fujiwara, and R. Craigie, “Retroviral DNA integration directed by HIV integration protein in vitro,” Science, vol. 249, no. 4976, pp. 1555–1558, 1990.
[24]
O. Delelis, K. Carayon, A. Sa?b, E. Deprez, and J. F. Mouscadet, “Integrase and integration: biochemical activities of HIV-1 integrase,” Retrovirology, vol. 5, article 114, 2008.
[25]
A. P. A. M. Eijkelenboom, F. M. I. Van Den Ent, A. Vos et al., “The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc,” Current Biology, vol. 7, no. 10, pp. 739–746, 1997.
[26]
L. Haren, B. Ton-Hoang, and M. Chandler, “Integrating DNA: transposases and retroviral integrases,” Annual Review of Microbiology, vol. 53, pp. 245–281, 1999.
[27]
A. P. A. M. Eijkelenboom, R. A. P. Lutzke, R. Boelens, R. H. A. Plasterk, R. Kaptein, and K. Hard, “The DNA-binding domain of HIV-1 integrase has an SH3-like fold,” Nature Structural Biology, vol. 2, no. 9, pp. 807–810, 1995.
[28]
P. Cherepanov, G. Maertens, P. Proost et al., “HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells,” Journal of Biological Chemistry, vol. 278, no. 1, pp. 372–381, 2003.
[29]
S. Hare, S. S. Gupta, E. Valkov, A. Engelman, and P. Cherepanov, “Retroviral intasome assembly and inhibition of DNA strand transfer,” Nature, vol. 464, no. 7286, pp. 232–236, 2010.
[30]
J. Y. Wang, H. Ling, W. Yang, and R. Craigie, “Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein,” EMBO Journal, vol. 20, no. 24, pp. 7333–7343, 2002.
[31]
J. C. H. Chen, J. Krucinski, L. J. W. Miercke et al., “Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 15, pp. 8233–8238, 2000.
[32]
M. Jaskolski, J. N. Alexandratos, G. Bujacz, and A. Wlodawer, “Piecing together the structure of retroviral integrase, an important target in AIDS therapy,” FEBS Journal, vol. 276, no. 11, pp. 2926–2946, 2009.
[33]
J. R. Huff, “HIV protease: a novel chemotherapeutic target for AIDS,” Journal of Medicinal Chemistry, vol. 34, no. 8, pp. 2305–2314, 1991.
[34]
M. A. Navia, P. M. D. Fitzgerald, B. M. McKeever et al., “Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1,” Nature, vol. 337, no. 6208, pp. 615–620, 1989.
[35]
A. Wlodawer and J. Vondrasek, “Inhibitors of HIV-1 protease: a major success of structure-assisted drug design,” Annual Review of Biophysics and Biomolecular Structure, vol. 27, pp. 249–284, 1998.
[36]
M. Miller, “The early years of retroviral protease crystal structures,” Biopolymers, vol. 94, no. 4, pp. 521–529, 2010.
[37]
F. Christ, A. Voet, A. Marchand et al., “Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication,” Nature Chemical Biology, vol. 6, no. 6, pp. 442–448, 2010.
[38]
W. Thys, K. Bartholomeeusen, Z. Debyser, and J. De Rijck, “Cellular cofactors of HIV integration,” in HIV-1 Integrase: Mechanism and Inhibitor Design, N. Neamati, Ed., pp. 105–129, John Wiley & Sons, Hoboken, NJ, USA, 2011.
[39]
C. M. Farnet and F. D. Bushman, “HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro,” Cell, vol. 88, no. 4, pp. 483–492, 1997.
[40]
I. De Martino, R. Visone, M. Fedele et al., “Regulation of microRNA expression by HMGA1 proteins,” Oncogene, vol. 28, no. 11, pp. 1432–1442, 2009.
[41]
A. Fusco and M. Fedele, “Roles of HMGA proteins in cancer,” Nature Reviews Cancer, vol. 7, no. 12, pp. 899–910, 2007.
[42]
M. S. Lee and R. Craigie, “A previously unidentified host protein protects retroviral DNA from autointegration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 4, pp. 1528–1533, 1998.
[43]
C. W. Lin and A. Engelman, “The barrier-to-autointegration factor is a component of functional human immunodeficiency virus type 1 preintegration complexes,” Journal of Virology, vol. 77, no. 8, pp. 5030–5036, 2003.
[44]
Y. Suzuki and R. Craigie, “Regulatory mechanisms by which barrier-to-autointegration factor blocks autointegration and stimulates intermolecular integration of Moloney murine leukemia virus preintegration complexes,” Journal of Virology, vol. 76, no. 23, pp. 12376–12380, 2002.
[45]
M. C. Shun, J. E. Daigle, N. Vandegraaff, and A. Engelman, “Wild-type levels of human immunodeficiency virus type 1 infectivity in the absence of cellular emerin protein,” Journal of Virology, vol. 81, no. 1, pp. 166–172, 2007.
[46]
M. B. Feinberg and D. Trono, “Intracellular immunization: trans-dominant mutants of HIV gene products as tools for the study and interruption of viral replication,” AIDS Research and Human Retroviruses, vol. 8, no. 6, pp. 1013–1022, 1992.
[47]
D. Bevec, M. Dobrovnik, J. Hauber, and E. Bohnlein, “Inhibition of human immunodeficiency virus type 1 replication in human T cells by retroviral-mediated gene transfer of a dominant-negative Rev trans-activator,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 20, pp. 9870–9874, 1992.
[48]
S. E. Liem, A. Ramezani, X. Li, and S. Joshi, “The development and testing of retroviral vectors expressing trans-dominant mutants of HIV-1 proteins to confer anti-HIV-1 resistance,” Human Gene Therapy, vol. 4, no. 5, pp. 625–634, 1993.
[49]
J. De Rijck, L. Vandekerckhove, R. Gijsbers et al., “Overexpression of the lens epithelium-derived growth factor/p75 integrase binding domain inhibits human immunodeficiency virus replication,” Journal of Virology, vol. 80, no. 23, pp. 11498–11509, 2006.
[50]
M. Llano, D. T. Saenz, A. Meehan et al., “An essential role for LEDGF/p75 in HIV integration,” Science, vol. 314, no. 5798, pp. 461–464, 2006.
[51]
T. M. Murali, M. D. Dyer, D. Badger, B. M. Tyler, and M. G. Katze, “Network-based prediction and analysis of HIV dependency factors,” PLoS Computational Biology, vol. 7, no. 9, pp. e1002164–e1002178, 2011.
[52]
J. C. Rain, A. Cribier, A. Gérard, S. Emiliani, and R. Benarous, “Yeast two-hybrid detection of integrase-host factor interactions,” Methods, vol. 47, no. 4, pp. 291–297, 2009.
[53]
G. V. Kalpana, S. Marmon, W. Wang, G. R. Crabtree, and S. P. Goff, “Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5,” Science, vol. 266, no. 5193, pp. 2002–2006, 1994.
[54]
F. Christ, W. Thys, J. De Rijck et al., “Transportin-SR2 Imports HIV into the Nucleus,” Current Biology, vol. 18, no. 16, pp. 1192–1202, 2008.
[55]
A. L. Brass, D. M. Dykxhoorn, Y. Benita et al., “Identification of host proteins required for HIV infection through a functional genomicscreen,” Science, vol. 319, no. 5865, pp. 921–926, 2008.
[56]
H. Zhou, M. Xu, Q. Huang et al., “Genome-scale RNAi screen for host factors required for HIV replication,” Cell Host and Microbe, vol. 4, no. 5, pp. 495–504, 2008.
[57]
F. D. Bushman, N. Malani, J. Fernandes et al., “Host cell factors in HIV replication: meta-analysis of genome-wide studies,” PLoS Pathogens, vol. 5, no. 5, Article ID e1000437, 2009.
[58]
W. Thys, S. De Houwer, J. Demeulemeester et al., “Interplay between HIV entry and transportin-SR2 dependency,” Retrovirology, vol. 8, article 7, 2011.
[59]
S. A. Adam, R. Sterne-Marr, and L. Gerace, “Chapter 18 in vitro nuclear protein import using permeabilized mammalian cells,” Methods in Cell Biology, vol. 35, pp. 469–482, 1991.
[60]
C. Marshallsay and R. Luhrmann, “In vitro nuclear import of snRNPs: cytosolic factors mediate m3G-cap dependence of U1 and U2 snRNP transport,” EMBO Journal, vol. 13, no. 1, pp. 222–231, 1994.
[61]
J. E. Hagstrom, J. J. Ludtke, M. C. Bassik, M. G. Sebestyén, S. A. Adam, and J. A. Wolff, “Nuclear import of DNA in digitonin-permeabilized cells,” Journal of Cell Science, vol. 110, no. 18, pp. 2323–2331, 1997.
[62]
D. McDonald, M. A. Vodicka, G. Lucero et al., “Visualization of the intracellular behavior of HIV in living cells,” Journal of Cell Biology, vol. 159, no. 3, pp. 441–452, 2002.
[63]
N. Arhel, A. Genovesio, K. A. Kim et al., “Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes,” Nature Methods, vol. 3, no. 10, pp. 817–824, 2006.
[64]
B. Müller, “Novel imaging technologies in the study of HIV,” Future Virology, vol. 6, no. 8, pp. 929–940, 2011.
[65]
A. Albanese, D. Arosio, M. Terreni, and A. Cereseto, “HIV-1 pre-integration complexes selectively target decondensed chromatin in the nuclear periphery,” PLoS ONE, vol. 3, no. 6, Article ID e2413, 2008.
[66]
X. Wu, H. Liu, H. Xiao et al., “Targeting foreign proteins to human immunodeficiency virus particles via fusion with Vpr and Vpx,” Journal of Virology, vol. 69, no. 6, pp. 3389–3398, 1995.
[67]
P. Colas, “High-throughput screening assays to discover small-molecule inhibitors of protein interactions,” Current Drug Discovery Technologies, vol. 5, no. 3, pp. 190–199, 2008.
[68]
L. M. Mayr and D. Bojanic, “Novel trends in high-throughput screening,” Current Opinion in Pharmacology, vol. 9, no. 5, pp. 580–588, 2009.
[69]
M. A. Cooper, “Optical biosensors: where next and how soon?” Drug Discovery Today, vol. 11, no. 23-24, pp. 1061–1067, 2006.
[70]
Y. Izumoto, T. Kuroda, H. Harada, T. Kishimoto, and H. Nakamura, “Hepatoma-derived growth factor belongs to a gene family in mice showing significant homology in the amino terminus,” Biochemical and Biophysical Research Communications, vol. 238, no. 1, pp. 26–32, 1997.
[71]
F. Dietz, S. Franken, K. Yoshida, H. Nakamura, J. Kappler, and V. Gieselmann, “The family of hepatoma-derived growth factor proteins: characterization of a new member HRP-4 and classification of its subfamilies,” Biochemical Journal, vol. 366, no. 2, pp. 491–500, 2002.
[72]
G. Maertens, P. Cherepanov, W. Pluymers et al., “LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells,” Journal of Biological Chemistry, vol. 278, no. 35, pp. 33528–33539, 2003.
[73]
A. Ciuffi, M. Llano, E. Poeschla et al., “A role for LEDGF/p75 in targeting HIV DNA integration,” Nature Medicine, vol. 11, no. 12, pp. 1287–1289, 2005.
[74]
M. C. Shun, N. K. Raghavendra, N. Vandegraaff et al., “LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration,” Genes and Development, vol. 21, no. 14, pp. 1767–1778, 2007.
[75]
H. M. Marshall, K. Ronen, C. Berry et al., “Role of PSIP 1/LEDGF/p75 in lentiviral infectivity and integration targeting,” PLoS ONE, vol. 2, no. 12, Article ID e1340, 2007.
[76]
J. Hendrix, R. Gijsbers, J. De Rijck et al., “The transcriptional co-activator LEDGF/p75 displays a dynamic scan-and-lock mechanism for chromatin tethering,” Nucleic Acids Research, vol. 39, no. 4, pp. 1310–1325, 2011.
[77]
P. Cherepanov, E. Devroe, P. A. Silver, and A. Engelman, “Identification of an evolutionarily conserved domain in human lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF/p75) that binds HIV-1 integrase,” Journal of Biological Chemistry, vol. 279, no. 47, pp. 48883–48892, 2004.
[78]
M. Llano, S. Delgado, M. Vanegas, and E. M. Poeschla, “Lens epithelium-derived growth factor/p75 prevents proteasomal degradation of HIV-1 integrase,” Journal of Biological Chemistry, vol. 279, no. 53, pp. 55570–55577, 2004.
[79]
E. M. Poeschla, “Integrase, LEDGF/p75 and HIV replication,” Cellular and Molecular Life Sciences, vol. 65, no. 9, pp. 1403–1424, 2008.
[80]
A. Engelman and P. Cherepanov, “The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication,” PLoS Pathogens, vol. 4, no. 3, Article ID e1000046, 2008.
[81]
S. Emiliani, A. Mousnier, K. Busschots et al., “Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication,” Journal of Biological Chemistry, vol. 280, no. 27, pp. 25517–25523, 2005.
[82]
L. Vandekerckhove, F. Christ, B. Van Maele et al., “Transient and stable knockdown of the integrase cofactor LEDGF/p75 reveals its role in the replication cycle of human immunodeficiency virus,” Journal of Virology, vol. 80, no. 4, pp. 1886–1896, 2006.
[83]
P. Cherepanov, Z. Y. J. Sun, S. Rahman, G. Maertens, G. Wagner, and A. Engelman, “Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75,” Nature Structural and Molecular Biology, vol. 12, no. 6, pp. 526–532, 2005.
[84]
P. Cherepanov, A. L. B. Ambrosio, S. Rahman, T. Ellenberger, and A. Engelman, “Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 48, pp. 17308–17313, 2005.
[85]
K. Busschots, A. Voet, M. De Maeyer et al., “Identification of the LEDGF/p75 binding site in HIV-1 integrase,” Journal of Molecular Biology, vol. 365, no. 5, pp. 1480–1492, 2007.
[86]
L. Q. Al-Mawsawi, F. Christ, R. Dayam, Z. Debyser, and N. Neamati, “Inhibitory profile of a LEDGF/p75 peptide against HIV-1 integrase: insight into integrase-DNA complex formation and catalysis,” FEBS Letters, vol. 582, no. 10, pp. 1425–1430, 2008.
[87]
L. Du, Y. Zhao, J. Chen et al., “D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75,” Biochemical and Biophysical Research Communications, vol. 375, no. 1, pp. 139–144, 2008.
[88]
L. De Luca, M. L. Barreca, S. Ferro et al., “Pharmacophore-based discovery of small-molecule inhibitors of protein-protein interactions between HIV-1 integrase and cellular cofactor LEDGF/p75,” ChemMedChem, vol. 4, no. 8, pp. 1311–1316, 2009.
[89]
K. Bartholomeeusen, J. De Rijck, K. Busschots et al., “Differential interaction of HIV-1 integrase and JPO2 with the C terminus of LEDGF/p75,” Journal of Molecular Biology, vol. 372, no. 2, pp. 407–421, 2007.
[90]
K. Bartholomeeusen, F. Christ, J. Hendrix et al., “Lens epithelium-derived growth factor/p75 interacts with the transposase-derived DDE domain of pogZ,” Journal of Biological Chemistry, vol. 284, no. 17, pp. 11467–11477, 2009.
[91]
G. N. Maertens, P. Cherepanov, and A. Engelman, “Transcriptional co-activator p75 binds and tethers the Myc-interacting protein JPO2 to chromatin,” Journal of Cell Science, vol. 119, no. 12, pp. 2563–2571, 2006.
[92]
S. Hughes, V. Jenkins, M. J. Dar, A. Engelman, and P. Cherepanov, “Transcriptional co-activator LEDGF interacts with Cdc7-activator of S-phase kinase (ASK) and stimulates its enzymatic activity,” Journal of Biological Chemistry, vol. 285, no. 1, pp. 541–554, 2010.
[93]
A. Yokoyama and M. L. Cleary, “Menin critically links MLL proteins with LEDGF on cancer-associated target genes,” Cancer Cell, vol. 14, no. 1, pp. 36–46, 2008.
[94]
J. Huang, B. Gurung, B. Wan et al., “The same pocket in menin binds both MLL and JUND but has opposite effects on transcription,” Nature, vol. 482, no. 7386, pp. 542–546, 2012.
[95]
Y. Hou, D. E. McGuinness, A. J. Prongay et al., “Screening for antiviral inhibitors of the HIV integrase-LEDGF/p75 interaction using the AlphaScreen luminescent proximity assay,” Journal of Biomolecular Screening, vol. 13, no. 5, pp. 406–414, 2008.
[96]
S. Maignan, J.-P. Guilloteau, Q. Zhou-Liu, C. Clément-Mella, and V. Mikol, “Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases,” Journal of Molecular Biology, vol. 282, no. 2, pp. 359–368, 1998.
[97]
V. Molteni, J. Greenwald, D. Rhodes et al., “Identification of a small-molecule binding site at the dimer interface of the HIV integrase catalytic domain,” Acta Crystallographica Section D, vol. 57, no. 4, pp. 536–544, 2001.
[98]
D. J. Hazuda, P. Felock, M. Witmer et al., “Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells,” Science, vol. 287, no. 5453, pp. 646–650, 2000.
[99]
R. Schrijvers, J. De Rijck, J. Demeulemeester et al., “LEDGF/p75-independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs,” PLoS Pathogens, vol. 8, no. 3, pp. e1002558–e1002574, 2012.
[100]
O. Delelis, I. Malet, L. Na et al., “The G140S mutation in HIV integrases from raltegravir-resistant patients rescues catalytic defect due to the resistance Q148H mutation,” Nucleic Acids Research, vol. 37, no. 4, pp. 1193–1201, 2009.
[101]
T. Roe, T. C. Reynolds, G. Yu, and P. O. Brown, “Integration of murine leukemia virus DNA depends on mitosis,” EMBO Journal, vol. 12, no. 5, pp. 2099–2108, 1993.
[102]
P. F. Lewis and M. Emerman, “Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus,” Journal of Virology, vol. 68, no. 1, pp. 510–516, 1994.
[103]
M. I. Bukrinsky, N. Sharova, M. P. Dempsey et al., “Active nuclear import of human immunodeficiency virus type 1 preintegration complexes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 14, pp. 6580–6584, 1992.
[104]
Y. Suzuki and R. Craigie, “The road to chromatin—nuclear entry of retroviruses,” Nature Reviews Microbiology, vol. 5, no. 3, pp. 187–196, 2007.
[105]
J. De Rijck, L. Vandekerckhove, F. Christ, and Z. Debyser, “Lentiviral nuclear import: a complex interplay between virus and host,” BioEssays, vol. 29, no. 5, pp. 441–451, 2007.
[106]
V. Zennou, C. Petit, D. Guetard, U. Nerhbass, L. Montagnier, and P. Charneau, “HIV-1 genome nuclear import is mediated by a central DNA flap,” Cell, vol. 101, no. 2, pp. 173–185, 2000.
[107]
A. Sirven, F. Pflumio, V. Zennou et al., “The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells,” Blood, vol. 96, no. 13, pp. 4103–4110, 2000.
[108]
J. De Rijck and Z. Debyser, “The central DNA flap of the human immunodeficiency virus type 1 is important for viral replication,” Biochemical and Biophysical Research Communications, vol. 349, no. 3, pp. 1100–1110, 2006.
[109]
M. Yamashita and M. Emerman, “Retroviral infection of non-dividing cells: old and new perspectives,” Virology, vol. 344, no. 1, pp. 88–93, 2006.
[110]
M. Yamashita and M. Emerman, “The cell cycle independence of HIV infections is not determined by known karyophilic viral elements,” PLoS Pathogens, vol. 1, no. 3, Article ID e18, 2005.
[111]
B. Van Maele, J. De Rijck, E. De Clercq, and Z. Debyser, “Impact of the central polypurine tract on the kinetics of human immunodeficiency virus type 1 vector transduction,” Journal of Virology, vol. 77, no. 8, pp. 4685–4694, 2003.
[112]
L. Rivière, J. L. Darlix, and A. Cimarelli, “Analysis of the viral elements required in the nuclear import of HIV-1 DNA,” Journal of Virology, vol. 84, no. 2, pp. 729–739, 2010.
[113]
M. Yamashita and M. Emerman, “Capsid is a dominant determinant of retrovirus infectivity in nondividing cells,” Journal of Virology, vol. 78, no. 11, pp. 5670–5678, 2004.
[114]
M. Yamashita, O. Perez, T. J. Hope, and M. Emerman, “Evidence for direct involvement of the capsid protein in HIV infection of nondividing cells,” PLoS Pathogens, vol. 3, no. 10, Article ID e156, 2007.
[115]
T. Schaller, K. E. Ocwieja, J. Rasaiyaah et al., “HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency,” PLoS Pathogens, vol. 7, no. 12, pp. e1002439–e1002453, 2011.
[116]
P. Gallay, V. Stitt, C. Mundy, M. Oettinger, and D. Trono, “Role of the karyopherin pathway in human immunodeficiency virus type 1 nuclear import,” Journal of Virology, vol. 70, no. 2, pp. 1027–1032, 1996.
[117]
P. Gallay, T. Hope, D. Chin, and D. Trono, “HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 18, pp. 9825–9830, 1997.
[118]
O. K. Haffar, S. Popov, L. Dubrovsky et al., “Two nuclear localization signals in the HIV-1 matrix protein regulate nuclear import of the HIV-1 pre-integration complex,” Journal of Molecular Biology, vol. 299, no. 2, pp. 359–368, 2000.
[119]
A. C. Hearps and D. A. Jans, “HIV-1 integrase is capable of targeting DNA to the nucleus via an importin α/β-dependent mechanism,” Biochemical Journal, vol. 398, no. 3, pp. 475–484, 2006.
[120]
Z. Ao, K. D. Jayappa, B. Wang et al., “Importin α3 interacts with HIV-1 integrase and contributes to HIV-1 nuclear import and replication,” Journal of Virology, vol. 84, no. 17, pp. 8650–8663, 2010.
[121]
K. D. Jayappa, Z. Ao, M. Yang, J. Wang, and X. Yao, “Identification of critical motifs within HIV-1 integrase required for importin α3 interaction and viral cDNA nuclear import,” Journal of Molecular Biology, vol. 410, no. 5, pp. 847–862, 2011.
[122]
A. Fassati, D. G?rlich, I. Harrison, L. Zaytseva, and J. M. Mingot, “Nuclear import of HIV-1 intracellular reverse transcription complexes is mediated by importin 7,” EMBO Journal, vol. 22, no. 14, pp. 3675–3685, 2003.
[123]
Z. Ao, G. Huang, H. Yao et al., “Interaction of human immunodeficiency virus type 1 integrase with cellular nuclear import receptor importin 7 and its impact on viral replication,” Journal of Biological Chemistry, vol. 282, no. 18, pp. 13456–13467, 2007.
[124]
C. L. Woodward, S. Prakobwanakit, S. Mosessian, and S. A. Chow, “Integrase interacts with nucleoporin NUP153 to mediate the nuclear import of human immunodeficiency virus type 1,” Journal of Virology, vol. 83, no. 13, pp. 6522–6533, 2009.
[125]
K. Lee, Z. Ambrose, T. D. Martin et al., “Flexible use of nuclear import pathways by HIV-1,” Cell Host and Microbe, vol. 7, no. 3, pp. 221–233, 2010.
[126]
P. Varadarajan, S. Mahalingam, P. Liu et al., “The functionally conserved nucleoporins Nup124p from fission yeast and the human Nup153 mediate nuclear import and activity of the Tf1 retrotransposon and HIV-1 Vpr,” Molecular Biology of the Cell, vol. 16, no. 4, pp. 1823–1838, 2005.
[127]
K. A. Matreyek and A. Engelman, “The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection is determined by the viral capsid,” Journal of Virology, vol. 85, no. 15, pp. 7818–7827, 2011.
[128]
Z. Ao, K. Danappa Jayappa, B. Wang et al., “Contribution of host nucleoporin 62 in HIV-1 integrase chromatin association and viral DNA integration,” Journal of Biological Chemistry, vol. 287, no. 13, pp. 10544–10555, 2012.
[129]
S. Popov, M. Rexach, L. Ratner, G. Blobel, and M. Bukrinsky, “Viral protein R regulates docking of the HIV-1 preintegration complex to the nuclear pore complex,” Journal of Biological Chemistry, vol. 273, no. 21, pp. 13347–13352, 1998.
[130]
K.-H. Kok, T. Lei, and D.-Y. Jin, “SiRNA and shRNA screens advance key understanding of host factors required for HIV-1 replication,” Retrovirology, vol. 6, article 78, 2009.
[131]
H. Ebina, J. Aoki, S. Hatta, T. Yoshida, and Y. Koyanagi, “Role of Nup98 in nuclear entry of human immunodeficiency virus type 1 cDNA,” Microbes and Infection, vol. 6, no. 8, pp. 715–724, 2004.
[132]
M. L. Yeung, L. Houzet, V. S. R. K. Yedavalli, and K. T. Jeang, “A genome-wide short hairpin RNA screening of Jurkat T-cells for human proteins contributing to productive HIV-1 replication,” Journal of Biological Chemistry, vol. 284, no. 29, pp. 19463–19473, 2009.
[133]
S. Hutten, S. W?lde, C. Spillner, J. Hauber, and R. H. Kehlenbach, “The nuclear pore component Nup358 promotes transportin-dependent nuclear import,” Journal of Cell Science, vol. 122, no. 8, pp. 1100–1110, 2009.
[134]
K. E. Ocwieja, T. L. Brady, K. Ronen et al., “HIV integration targeting: a pathway involving transportin-3 and the nuclear pore protein RanBP2,” PLoS Pathogens, vol. 7, no. 3, Article ID e1001313, 2011.
[135]
A. Armon-Omer, A. Graessmann, and A. Loyter, “A synthetic peptide bearing the HIV-1 integrase 161-173 amino acid residues mediates active nuclear import and binding to importin α: characterization of a functional nuclear localization signal,” Journal of Molecular Biology, vol. 336, no. 5, pp. 1117–1128, 2004.
[136]
M. K?hler, C. Speck, M. Christiansen et al., “Evidence for distinct substrate specificities of importin α family members in nuclear protein import,” Molecular and Cellular Biology, vol. 19, no. 11, pp. 7782–7791, 1999.
[137]
C. Depienne, A. Mousnier, H. Leh et al., “Characterization of the nuclear import pathway for HIV-1 integrase,” Journal of Biological Chemistry, vol. 276, no. 21, pp. 18102–18107, 2001.
[138]
S. P. Zielske and M. Stevenson, “Importin 7 may be dispensable for human immunodeficiency virus type 1 and simian immunodeficiency virus infection of primary macrophages,” Journal of Virology, vol. 79, no. 17, pp. 11541–11546, 2005.
[139]
L. Zaitseva, P. Cherepanov, L. Leyens, S. J. Wilson, J. Rasaiyaah, and A. Fassati, “HIV-1 exploits importin 7 to maximize nuclear import of its DNA genome,” Retrovirology, vol. 6, article 11, 2009.
[140]
A. Monette, L. Ajamian, M. López-Lastra, and A. J. Mouland, “Human immunodeficiency virus type 1 (HIV-1) induces the cytoplasmic retention of heterogeneous nuclear ribonucleoprotein A1 by disrupting nuclear import. Implications for HIV-1 gene expression,” Journal of Biological Chemistry, vol. 284, no. 45, pp. 31350–31362, 2009.
[141]
A. Monette, N. Panté, and A. J. Mouland, “HIV-1 remodels the nuclear pore complex,” Journal of Cell Biology, vol. 193, no. 4, pp. 619–631, 2011.
[142]
T. Brady, L. M. Agosto, N. Malani, C. C. Berry, U. O'Doherty, and F. Bushman, “HIV integration site distributions in resting and activated CD4+ T cells infected in culture,” AIDS, vol. 23, no. 12, pp. 1461–1471, 2009.
[143]
R. Zhang, R. Mehla, and A. Chauhan, “Perturbation of host nuclear membrane component RanBP2 impairs the nuclear import of human immunodeficiency virus -1 preintegration complex (DNA),” PLoS ONE, vol. 5, no. 12, Article ID e15620, 2010.
[144]
M. C. Lai, R. I. Lin, S. Y. Huang, C. W. Tsai, and W. Y. Tarn, “A human importin-β family protein, transportin-SR2, interacts with the phosphorylated RS domain of SR proteins,” Journal of Biological Chemistry, vol. 275, no. 11, pp. 7950–7957, 2000.
[145]
N. Kataoka, J. L. Bachorik, and G. Dreyfuss, “Transportin-SR, a nuclear import receptor for SR proteins,” Journal of Cell Biology, vol. 145, no. 6, pp. 1145–1152, 1999.
[146]
M. C. Lai, R. I. Lin, and W. Y. Tarn, “Transportin-SR2 mediates nuclear import of phosphorylated SR proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 18, pp. 10154–10159, 2001.
[147]
M. C. Lai, H. W. Kuo, W. C. Chang, and W. Y. Tarn, “A novel splicing regulator shares a nuclear import pathway with SR proteins,” EMBO Journal, vol. 22, no. 6, pp. 1359–1369, 2003.
[148]
S. Anguissola, W. J. McCormack, M. A. Morrin, W. J. Higgins, D. M. Fox, and D. M. Worrall, “Pigment Epithelium-Derived Factor (PEDF) Interacts with Transportin SR2, and Active Nuclear Import Is Facilitated by a Novel Nuclear Localization Motif,” PLoS ONE, vol. 6, no. 10, pp. e26234–e26244, 2011.
[149]
M. L. Hedley, H. Amrein, and T. Maniatis, “An amino acid sequence motif sufficient for subnuclear localization of an arginine/serine-rich splicing factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 25, pp. 11524–11528, 1995.
[150]
J. F. Cáceres, T. Misteli, G. R. Screaton, D. L. Spector, and A. R. Krainer, “Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity,” Journal of Cell Biology, vol. 138, no. 2, pp. 225–238, 1997.
[151]
M. Stewart, “Molecular mechanism of the nuclear protein import cycle,” Nature Reviews Molecular Cell Biology, vol. 8, no. 3, pp. 195–208, 2007.
[152]
M. Caputi, M. Freund, S. Kammler, C. Asang, and H. Schaal, “A bidirectional SF2/ASF- and SRp40-dependent splicing enhancer regulates human immunodeficiency virus type 1 rev, env, vpu, and nef gene expression,” Journal of Virology, vol. 78, no. 12, pp. 6517–6526, 2004.
[153]
S. Jacquenet, D. Decimo, D. Muriaux, and J. L. Darlix, “Dual effect of the SR proteins ASF/SF2, SC35 and 9G8 on HIV-1 RNA splicing and virion production,” Retrovirology, vol. 2, article 33, 2005.
[154]
L. Krishnan, K. A. Matreyek, I. Oztop et al., “The requirement for cellular transportin 3 (TNPO3 or TRN-SR2) during infection maps to human immunodeficiency virus type 1 capsid and not integrase,” Journal of Virology, vol. 84, no. 1, pp. 397–406, 2010.
[155]
A. De Iaco and J. Luban, “Inhibition of HIV-1 infection by TNPO3 depletion is determined by capsid and detectable after viral cDNA enters the nucleus,” Retrovirology, vol. 8, pp. 98–116, 2011.
[156]
E. C. Logue, K. T. Taylor, P. H. Goff, and N. R. Landau, “The cargo-binding domain of transportin 3 is required for lentivirus nuclear import,” Journal of Virology, vol. 85, no. 24, pp. 12950–12961, 2011.
[157]
D. Yu, W. Wang, A. Yoder, M. Spear, and Y. Wu, “The HIV envelope but not VSV glycoprotein is capable of mediating HIV latent infection of resting CD4 T cells,” PLoS Pathogens, vol. 5, no. 10, Article ID e1000633, 2009.
[158]
A. Cribier, E. Segeral, O. Delelis et al., “Mutations affecting interaction of integrase with TNPO3 do not prevent HIV-1 cDNA nuclear import,” Retrovirology, vol. 8, no. 1, pp. 104–117, 2011.
[159]
L. Zhou, E. Sokolskaja, C. Jolly, W. James, S. A. Cowley, and A. Fassati, “Transportin 3 promotes a nuclear maturation step required for efficient HIV-1 integration,” PLoS Pathogens, vol. 7, no. 8, pp. e1002194–e1002212, 2011.