全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nonlinear Bayesian Tracking Loops for Multipath Mitigation

DOI: 10.1155/2012/359128

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper studies Bayesian filtering techniques applied to the design of advanced delay tracking loops in GNSS receivers with multipath mitigation capabilities. The analysis includes tradeoff among realistic propagation channel models and the use of a realistic simulation framework. After establishing the mathematical framework for the design and analysis of tracking loops in the context of GNSS receivers, we propose a filtering technique that implements Rao-Blackwellization of linear states and a particle filter for the nonlinear partition and compare it to traditional delay lock loop/phase lock loop-based schemes. 1. Introduction Global Navigation Satellite Systems (GNSS) are the general concept used to identify those systems that allow user positioning based on a constellation of satellites. Specific GNSS are the well-known American GPS, the Russian GLONASS, or the forthcoming European Galileo. All those systems rely on the same principle: the user computes its position by means of measured distances between the receiver and the set of in-view satellites. These distances are calculated estimating the propagation time that synchronously transmitted signals take from each satellite to the receiver. Therefore, GNSS receivers are only interested in estimating the delays of signals which are received directly from the satellites, referred to as line-of-sight signal (LOSS), since they are the ones that carry information of direct propagation time. Hence, reflections distort the received signal in a way that may cause a bias in delay and carrier-phase estimations. Multipath is probably the dominant source of error in high-precision applications, especially in urban scenarios, since it can introduce a bias up to a hundred of meters when employing a 1-chip wide (standard) delay lock loop (DLL) to track the delay of the LOSS, which is a common synchronization method used in spread-spectrum receivers. This error might be unacceptable in many applications. Sophisticated synchronization techniques estimate not only LOSS parameters but those of multipath echoes. This results in enhanced, virtually bias-free pseudorange measurements. In this paper, we investigate multipath estimating tracking loops in realistic scenarios, where this effect is known to be severe. The analysis is driven in two directions. Firstly, a review of statistical characterization of the channel model in such situations is performed and a commercial signal simulator. Secondly, a novel multipath estimating tracking loop is discussed, providing details on the implementation, as well as

References

[1]  M. Hernández-Pajares, J. M. J. Zornoza, J. S. Subirana, R. Farnworth, and S. Soley, “EGNOS test bed ionospheric corrections under the October and November 2003 storms,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 10, pp. 2283–2293, 2005.
[2]  S. Bancroft, “An algebraic solution of the GPS equations,” IEEE Transactions on Aerospace and Electronic Systems, vol. 21, no. 1, pp. 56–59, 1985.
[3]  G. Strang and K. Borre, Linear Algebra, Geodesy, and GPS, Wellesley Cambridge Press, 1997.
[4]  B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle, GNSS -Global Navigation Satellite Systems: GPS, GLONASS, Galileo & More, Springer-Verlag, Wien, Austria, 2008.
[5]  C. Fernández-Prades, L. L. Presti, and E. Falletti, “Satellite radiolocalization from GPS to GNSS and beyond: novel technologies and applications for civil mass market,” Proceedings of the IEEE, vol. 99, no. 11, pp. 1882–1904, 2011.
[6]  A. Jahn, H. Bischl, and G. Heiss, “Channel characterization for spread spectrum satellite communications,” in Proceedings of the 4th International Symposium on Spread Spectrum Techniques & Applications (ISSSTA '96), pp. 1221–1226, September 1996.
[7]  C. Loo and J. S. Butterworth, “Land mobile satellite channel measurements and modeling,” Proceedings of the IEEE, vol. 86, no. 7, pp. 1442–1462, 1998.
[8]  M. A. V. Castro, F. P. Fontan, A. A. Villamarín, S. Buonomo, P. Baptista, and B. Arbesser, “L-band Land Mobile Satellite (LMS) amplitude and multipath phase modeling in urban areas,” IEEE Communications Letters, vol. 3, no. 1, pp. 12–14, 1999.
[9]  F. P. Fontán, M. Vázquez-Castro, C. E. Cabado, J. P. García, and E. Kubista, “Statistical modeling of the LMS channel,” IEEE Transactions on Vehicular Technology, vol. 50, no. 6, pp. 1549–1567, 2001.
[10]  A. Steingass and A. Lehner, “A channel model for land mobile satellite navigation,” in Proceedings of the the European Navigation Conference, pp. 2132–2138, German Institute of Navigation (DGON), July 2005.
[11]  Recommendation ITU-R P.681-7, “Propagation data required for the design of Earth-space land mobile telecommunication systems,” 2009, http://www.itu.int/rec/R-REC-P.681-7-200910-I/en.
[12]  P. Closas, Bayesian signal processing techniques for GNSS receivers: from multipath mitigation to positioning [Ph.D. dissertation], Universitat Politècnica de Catalunya (UPC), Department of Signal Theory and Communications, Barcelona, Spain, 2009.
[13]  D. M. Akos, M. Stockmaster, J. B. Y. Tsui, and J. Caschera, “Direct bandpass sampling of multiple distinct RF signals,” IEEE Transactions on Communications, vol. 47, no. 7, pp. 983–988, 1999.
[14]  B. Parkinson and J. Spilker, Eds., Global Positioning System: Theory and Applications, vol. 1 of Progress in Astronautics and Aeronautics, American Institute of Aeronautics, Washington, DC, USA, 1996.
[15]  J. S. Silva, P. F. Silva, A. Fernández, J. Diez, and J. F. M. Lorga, “Factored correlator model: a solution for fast, flexible, and realistic GNSS receiver simulations,” in Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS '07), pp. 2676–2686, Fort Worth, TX, USA, September 2007.
[16]  R. E. Kalman, “A new approach to linear filtering and prediction problems,” Transactions of the ASME-Journal of Basic Engineering, vol. 82, pp. 35–45, 1960.
[17]  Z. Chen, “Bayesian filtering: from Kalman filters to particle filters, and beyond,” Tech. Rep., Adaptive Systems Laboratory, McMaster University, Ontario, Canada, 2003.
[18]  M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking,” IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188, 2002.
[19]  P. M. Djuri?, J. H. Kotecha, J. Zhang et al., “Particle filtering,” IEEE Signal Processing Magazine, vol. 20, no. 5, pp. 19–38, 2003.
[20]  M. Boli?, P. M. Djuric, and S. Hong, “Resampling algorithms for particle filters: a computational complexity perspective,” Eurasip Journal on Applied Signal Processing, vol. 2004, no. 15, pp. 2267–2277, 2004.
[21]  R. Douc, O. Cappé, and E. Moulines, “Comparison of resampling schemes for particle filtering,” in Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis (ISPA '05), pp. 64–69, Zagreb, Croatia, September 2005.
[22]  GRANADA Galileo Receiver ANalysis And Design Application. The Reference Galileo Simulation Toolkit for GNSS Receiver Research And Development. Factored Correlator Model Blockset v2.0 User Manual, Deimos Engenharia, S.A., 2009.
[23]  T. Sch?n, F. Gustafsson, and P. J. Nordlund, “Marginalized particle filters for mixed linear/nonlinear state-space models,” IEEE Transactions on Signal Processing, vol. 53, no. 7, pp. 2279–2289, 2005.
[24]  R. Karlsson, Particle filtering for positioning and tracking applications [Ph.D. dissertation], Link?ping University, Link?ping, Sweden, 2005.
[25]  R. Chen and J. S. Liu, “Mixture Kalman filters,” Journal of the Royal Statistical Society B, vol. 62, no. 3, pp. 493–508, 2000.
[26]  A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential Monte Carlo Methods in Practice, Springer, 2001.
[27]  C. Rao, “Information and the accuracy attainable in the estimation of statistical parameters,” Bulletin of Calcutta Mathematical Society, vol. 37, pp. 81–91, 1945.
[28]  D. Blackwell, “Conditional expectation and unbiased sequential estimation,” The Annals of Mathematical Statistics, vol. 18, no. 1, pp. 105–110, 1947.
[29]  E. Lehmann, Theory of Point Estimation. Probability and Mathematical Statistics, John Wiley & Sons, 1983.
[30]  A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, McGraw-Hill, New Delhi, India, 4th edition, 2001.
[31]  P. Closas, C. Fernández-Prades, and J. A. Fernández-Rubio, “Bayesian DLL for multipath mitigation in navigation systems using particle filters,” in Proceedings of the IEEE (ICASSP '06), Toulouse, France, May 2006.
[32]  P. Closas, C. Fernández-Prades, and J. A. Fernández-Rubio, “A Bayesian approach to multipath mitigation in GNSS receivers,” IEEE Journal on Selected Topics in Signal Processing, vol. 3, no. 4, pp. 695–706, 2009.
[33]  M. Lentmaier, B. Krach, and P. Robertson, “Bayesian time delay estimation of GNSS signals in dynamic multipath environments,” International Journal of Navigation and Observation, vol. 2008, Article ID 372651, 11 pages, 2008.
[34]  B. Krach, P. Robertson, and R. Weigel, “An efficient two-fold marginalized Bayesian filter for multipath estimation in satellite navigation receivers,” Eurasip Journal on Advances in Signal Processing, vol. 2010, Article ID 287215, 2010.
[35]  A. Steingass and A. Lehner, “Measuring the navigation multipath channel—a statistical analysis,” in Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS '04), pp. 1157–1164, Long Beach, Calif, USA, September 2004.
[36]  M. Irsigler, J. A. ávila-Rodríguez, and G. W. Hein, “Criteria for GNSS multipath performance assessment,” in Proceedings of the International Technical Meeting of the Institute of Navigation(ION GPS/GNSS '05), Long Beach, Calif, USA, September 2005.
[37]  P. Closas, C. Fernández-Prades, J. Diez, and D. de Castro, “Multipath estimating tracking loops in advanced GNSS receivers with particle filtering,” in Proceedings of the IEEE Aerospace Conference, Big Sky, Mont, USA, March 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413