全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Longitudinal Evaluation of Fatty Acid Metabolism in Normal and Spontaneously Hypertensive Rat Hearts with Dynamic MicroSPECT Imaging

DOI: 10.1155/2011/893129

Full-Text   Cite this paper   Add to My Lib

Abstract:

The goal of this project is to develop radionuclide molecular imaging technologies using a clinical pinhole SPECT/CT scanner to quantify changes in cardiac metabolism using the spontaneously hypertensive rat (SHR) as a model of hypertensive-related pathophysiology. This paper quantitatively compares fatty acid metabolism in hearts of SHR and Wistar-Kyoto normal rats as a function of age and thereby tracks physiological changes associated with the onset and progression of heart failure in the SHR model. The fatty acid analog, 123I-labeled BMIPP, was used in longitudinal metabolic pinhole SPECT imaging studies performed every seven months for 21 months. The uniqueness of this project is the development of techniques for estimating the blood input function from projection data acquired by a slowly rotating camera that is imaging fast circulation and the quantification of the kinetics of 123I-BMIPP by fitting compartmental models to the blood and tissue time-activity curves. 1. Introduction Hypertrophic cardiomyopathy is a condition in which the heart muscle becomes thick, forcing the heart to work harder to pump blood. Under normal conditions the heart uses glucose (~30%), fatty acids (~60%), and lactate (~10%) as primary energy sources, in addition to amino acids and ketone bodies [1–3]. In the case of cardiac hypertrophy, however, there is an increase in cardiac mass and a switch to a reliance on glucose metabolism. To be able to detect and interpret the early onset of this change, there is the need to develop methodology for sensitive predictors for early detection, prognosis and to follow the response to therapy for hypertrophic cardiomyopathy. In clinical settings, the abnormalities of fatty acid metabolism in hypertrophic cardiomyopathy can be recognized by the decreased uptake in single-photon emission computed tomography (SPECT) images [4]. It has also been demonstrated that compartmental analysis and dynamic SPECT imaging make it possible to detect abnormalities of fatty acid utilization earlier than SPECT imaging, with the potential to provide an even earlier prediction of the onset of cardiac hypertrophy [5]. There is a need to develop technology for imaging small animal models on clinical SPECT systems that could easily be translated to the clinic for diagnosis and management of patients with cardiac hypertrophy. However, the challenge is to perform compartmental analysis of dynamic studies in small animals with pinhole SPECT using slowly rotating gantries (slow camera rotation with 1?s per view) when the recirculation time in the animals is

References

[1]  R. Nohara, “Lipid metabolism in the heart: contribution of BMIPP to the diseased heart,” Annals of Nuclear Medicine, vol. 15, no. 5, pp. 403–409, 2001.
[2]  L. H. Opie, The Heart: Physiology and Metabolism, Raven Press, New York, NY, USA, 2nd edition, 1991.
[3]  J. R. Neely and H. E. Morgan, “Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle,” Annual Review of Physiology, vol. 36, pp. 413–459, 1974.
[4]  S. Matsuo, Y. Nakamura, M. Takahashi, K. Mitsunami, and M. Kinoshita, “Myocardial metabolic abnormalities in hypertrophic cardiomyopathy assessed by iodine-123-labeled beta-methyl-branched fatty acid myocardial scintigraphy and its relation to exercise-induced ischemia,” Japanese Circulation Journal, vol. 62, no. 3, pp. 167–172, 1998.
[5]  A. Okizaki, N. Shuke, J. Sato et al., “A compartment model analysis for investigation of myocardial fatty acid metabolism in patients with hypertrophic cardiomyopathy,” Nuclear Medicine Communications, vol. 28, no. 9, pp. 726–735, 2007.
[6]  G. T. Gullberg, R. H. Huesman, J. Qi, B. W. Reutter, A. Sitek, and Y. Yang, “Evaluation of cardiac hypertrophy in spontaneously hypertensive rats using metabolic rate of glucose estimated from dynamic microPET image data,” Molecular Imaging, vol. 3, no. 3, p. 225, 2004.
[7]  G. T. Gullberg, R. H. Huesman, B. W. Reutter, et al., “A study of changes in deformation and metabolism in the left ventricle as a function of hypertrophy in spontaneous hypertensive rats using microPET technology,” Journal of Nuclear Cardiology, vol. 12, no. 2, p. S74, 2005.
[8]  J. Hu, A. Sitek, B. W. Reutter, R. H. Huesman, and G. T. Gullberg, “A new approach of dynamic pinhole SPECT imaging for evaluation of sympathetic nervous system function in animal models of cardiac hypertrophy,” in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference Record, B. Yu, Ed., pp. 2542–2546, 2005.
[9]  J. Hu, A. Sitek, B. W. Reutter, R. H. Huesman, and G. T. Gullberg, “Dynamic molecular imaging of cardiac innervation using a dual head pinhole SPECT system,” Tech. Rep. LBNL-60008, Lawrence Berkeley National Laboratory, 2006.
[10]  A. B. Hwang, B. W. Reutter, R. H. Huesman, et al., “High resolution simultaneous I-125 and Tc-99?m cardiac imaging of a rat using a conventional SPECT system with pin-hole collimators,” Journal of Nuclear Medicine, vol. 45, no. 5, pp. 422P–423P, 2004.
[11]  A. B. Hwang, B. L. Franc, G. T. Gullberg, and B. H. Hasegawa, “Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals,” Physics in Medicine and Biology, vol. 53, no. 9, pp. 2233–2252, 2008.
[12]  T. Hajri, A. Ibrahimi, C. T. Coburn et al., “Defective fatty acid uptake in the spontaneously hypertensive rat is a primary determinant of altered glucose metabolism, hyperinsulinemia, and myocardial hypertrophy,” Journal of Biological Chemistry, vol. 276, no. 26, pp. 23661–23666, 2001.
[13]  M. Taylor, T. R. Wallhaus, T. R. Degrado et al., “An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in patients with congestive heart failure,” Journal of Nuclear Medicine, vol. 42, no. 1, pp. 55–62, 2001.
[14]  O. D. Mjos, “Effect of free fatty acids on myocardial function and oxygen consumption in intact dogs,” Journal of Clinical Investigation, vol. 50, no. 7, pp. 1386–1389, 1971.
[15]  H. Taegtmeyer, “Energy metabolism of the heart: from basic concepts to clinical applications,” Current Problems in Cardiology, vol. 19, no. 2, pp. 59–113, 1994.
[16]  F. C. Visser, “Imaging of cardiac metabolism using radiolabelled glucose, fatty acids and acetate,” Coronary Artery Disease, vol. 12, supplement 1, pp. S12–S18, 2001.
[17]  S. P. Bishop and R. A. Altschuld, “Increased glycolytic metabolism in cardiac hypertrophy and congestive failure,” The American Journal of Physiology, vol. 218, no. 1, pp. 153–159, 1970.
[18]  M. E. Chiste and R. L. Rodgers, “Altered glucose and fatty acid oxidation in hearts of the spontaneously hypertensive rat,” Journal of Molecular and Cellular Cardiology, vol. 26, no. 10, pp. 1371–1375, 1994.
[19]  K. Kataoka, R. Nohara, R. Hosokawa et al., “Myocardial lipid metabolism in compensated and advanced stages of heart failure: evaluation by canine pacing model with BMIPP,” Journal of Nuclear Medicine, vol. 42, no. 1, pp. 124–129, 2001.
[20]  F. F. Knapp Jr. and J. Kropp, “BMIPP-design and development,” International Journal of Cardiac Imaging, vol. 15, no. 1, pp. 1–9, 1999.
[21]  V. G. Dávila-Román, G. Vedala, P. Herrero et al., “Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy,” Journal of the American College of Cardiology, vol. 40, no. 2, pp. 271–277, 2002.
[22]  F. A. Recchia, P. I. McConnell, R. D. Bernstein, T. R. Vogel, X. Xu, and T. H. Hintze, “Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog,” Circulation Research, vol. 83, no. 10, pp. 969–979, 1998.
[23]  M. N. Sack, T. A. Rader, S. Park, J. Bastin, S. A. McCune, and D. P. Kelly, “Fatty acid oxidation enzyme gene expression is downregulated in the failing heart,” Circulation, vol. 94, no. 11, pp. 2837–2842, 1996.
[24]  C. Brunold, Z. El Alaoui-Talibi, M. Moravec, and J. Moravec, “Palmitate oxidation by the mitochondria from volume-overloaded rat hearts,” Molecular and Cellular Biochemistry, vol. 180, no. 1-2, pp. 117–128, 1998.
[25]  J. J. Lehman and D. P. Kelly, “Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth,” Heart Failure Reviews, vol. 7, no. 2, pp. 175–185, 2002.
[26]  M. N. Sack and D. P. Kelly, “The energy substrate switch during development of heart failure: gene regulatory mechanisms (Review),” International Journal of Molecular Medicine, vol. 1, no. 1, pp. 17–24, 1998.
[27]  B. W. Reutter, G. T. Gullberg, R. Boutchko, et al., “Fully 4-D dynamic cardiac SPECT image reconstruction using spatiotemporal B-spline voxelization,” in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference Record, B. Yu, Ed., pp. 4217–4221, 2007.
[28]  B. W. Reutter, R. Boutchko, R. H. Boutchko, et al., “Dynamic pinhole SPECT imaging and compartmental modeling of fatty acid metabolism in the rat heart,” in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference Record, P. Sellin, Ed., pp. 4478–4481, 2008.
[29]  B. W. Reutter, R. Boutchko, R. H. Huesman, A. C. Sauve, and G. T. Gullberg, “Penalized least-squares dynamic pinhole SPECT image reconstruction using a smooth 4-D image prior and multiresolution spatiotemporal B-splines,” in Proceedings of the 10th International Conference on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, B. M. W. Tsui and Z. Chen, Eds., pp. 110–113, 2009.
[30]  B. F. Hutton and A. Osiecki, “Correction of partial volume effects in myocardial SPECT,” Journal of Nuclear Cardiology, vol. 5, no. 4, pp. 402–413, 1998.
[31]  P. H. Pretorius and M. A. King, “Diminishing the impact of the partial volume effect in cardiac SPECT perfusion imaging,” Medical Physics, vol. 36, no. 1, pp. 105–115, 2009.
[32]  R. H. Huesman, B. L. Knittel, B. M. Mazoyer, et al., “Notes on RFIT: a program for fitting compartmental models to region-of-interest dynamic emission tomography data,” Tech. Rep. LBL-37621, Lawrence Berkeley National Laboratory, 1995.
[33]  R. J. Jaszczak, J. Li, H. Wang, M. R. Zalutsky, and R. E. Coleman, “Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT,” Physics in Medicine and Biology, vol. 39, no. 3, pp. 425–437, 1994.
[34]  A. Sauve, W. Choong, R. Boutchko, et al., “Quantitative imaging of cardiovascular function with pinhole SPECT in mice and rats—effects of attenuation and scatter,” Journal of Nuclear Medicine, vol. 48, no. 5, pp. 424P–425P, 2007.
[35]  A. C. Sauve, B. W. Reutter, R. Boutchko, et al., “Multi-slice SPECT attenuation and scatter correction using Monte Carlo simulated system matrices,” in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference Record, P. Sellin, Ed., pp. 4273–4276, 2008.
[36]  B. W. Reutter, G. T. Gullberg, and R. H. Huesman, “Kinetic parameter estimation from attenuated SPECT projection measurements,” IEEE Transactions on Nuclear Science, vol. 45, no. 6, pp. 3007–3013, 1998.
[37]  B. W. Reutter, S. Oh, G. T. Gullberg, and R. H. Huesman, “Improved quantitation of dynamic SPECT via fully 4-D joint estimation of compartmental models and blood input function directly from projections,” in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference Record, B. Yu, Ed., pp. 2337–2341, 2005.
[38]  O. H. L. Bing, C. H. Conrad, M. O. Boluyt, K. G. Robinson, and W. W. Brooks, “Studies of prevention, treatment and mechanisms of heart failure in the aging spontaneously hypertensive rat,” Heart Failure Reviews, vol. 7, no. 1, pp. 71–88, 2002.
[39]  O. H. Cingolani, X.-P. Yang, M. A. Cavasin, and O. A. Carretero, “Increased systolic performance with diastolic dysfunction in adult spontaneously hypertensive rats,” Hypertension, vol. 41, no. 2, pp. 249–254, 2003.
[40]  J. E. Jalil, C. W. Doering, J. S. Janicki, R. Pick, S. G. Shroff, and K. T. Weber, “Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle,” Circulation Research, vol. 64, no. 6, pp. 1041–1050, 1989.
[41]  L. de las Fuentes, P. F. Soto, B. P. Cupps et al., “Hypertensive left ventricular hypertrophy is associated with abnormal myocardial fatty acid metabolism and myocardial efficiency,” Journal of Nuclear Cardiology, vol. 13, no. 3, pp. 369–377, 2006.
[42]  A. M. Kates, P. Herrero, C. Dence et al., “Impact of aging on substrate metabolism by the human heart,” Journal of the American College of Cardiology, vol. 41, no. 2, pp. 293–299, 2003.
[43]  J. A. Odiet, M. E. T. I. Boerrigter, and J. Y. Wei, “Carnitine palmitoyl transferase-I activity in the aging mouse heart,” Mechanisms of Ageing and Development, vol. 79, no. 2-3, pp. 127–136, 1995.
[44]  G. Paradies, F. M. Ruggiero, G. Petrosillo, M. N. Gadaleta, and E. Quagliariello, “The effect of aging and acetyl-L-carnitine on the function and on the lipid composition of rat heart mitochondria,” Annals of the New York Academy of Sciences, vol. 717, pp. 233–243, 1994.
[45]  A. Chauhan, R. S. More, P. A. Mullins, G. Taylor, M. C. Petch, and P. M. Schofield, “Aging-associated endothelial dysfunction in humans is reversed by L-arginine,” Journal of the American College of Cardiology, vol. 28, no. 7, pp. 1796–1804, 1996.
[46]  J. B. McMillin, G. E. Taffet, H. Taegtmeyer, E. K. Hudson, and C. A. Tate, “Mitochondrial metabolism and substrate competition in the aging Fischer rat heart,” Cardiovascular Research, vol. 27, no. 12, pp. 2222–2228, 1993.
[47]  J. Sample, J. G. F. Cleland, and A.-M. L. Seymour, “Metabolic remodeling in the aging heart,” Journal of Molecular and Cellular Cardiology, vol. 40, no. 1, pp. 56–63, 2006.
[48]  A. M. Gerdes, T. Onodera, X. Wang, and S. A. McCune, “Myocyte remodeling during the progression to failure in rats with hypertension,” Hypertension, vol. 28, no. 4, pp. 609–614, 1996.
[49]  G. Olivetti, M. Melissari, J. M. Capasso, and P. Anversa, “Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy,” Circulation Research, vol. 68, no. 6, pp. 1560–1568, 1991.
[50]  C. S. Apstein, “Increased glycolytic substrate protection improves ischemic cardiac dysfunction and reduces injury,” American Heart Journal, vol. 139, no. 2, part 3, pp. S107–S114, 2000.
[51]  F. D. Van Have, B. Vastenhouw, R. M. Ramakers et al., “U-SPECT-II: an ultra-high-resolution device for molecular small-animal imaging,” Journal of Nuclear Medicine, vol. 50, no. 4, pp. 599–605, 2009.
[52]  H. Wahnishe, J. O'Neil, M. Janabi, et al., “Cardiac metabolism as a function of cardiac hypertrophy using microPET/CT imaging of [F-18]FTHA and [F-18]FDG,” Journal of Nuclear Medicine, vol. 51, supplement 2, p. 324, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133