全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Reduction of Collimator Correction Artefacts with Bayesian Reconstruction in Spect

DOI: 10.1155/2011/630813

Full-Text   Cite this paper   Add to My Lib

Abstract:

Poor resolution of single photon emission computed tomography (SPECT) has degraded its use in clinical practice. Collimator correction has been shown to improve the reconstructed resolution, but the correction can generate ringing artefacts, which lower image quality. This paper investigates whether Bayesian reconstruction methods could reduce these artefacts. We have applied and tested three Bayesian reconstruction methods: smoothing prior, median root prior, and anatomical prior. To demonstrate the efficacy of these methods, we compared their physical and visual performance both in phantom and patient studies. All the three Bayesian reconstruction methods reduced the collimator correction artefacts. Images reconstructed using the smoothing prior and the median root prior had slightly lower contrast than the standard reconstruction with collimator correction, whereas the anatomical prior produced images with good resolution and contrast. 1. Introduction Collimator response correction during iterative SPECT reconstruction has recently gained a lot of attention. The collimator response correction has been shown to simultaneously increase reconstructed resolution and lower image noise level [1]. This improvement in resolution-noise trade-off has further been shown to lead to better lesion detection performance [2, 3] and higher quantitative accuracy [4]. The improved resolution-noise trade-off has also given rise to the idea of half-time imaging; that is with the new correction methods it could be possible to acquire data with at least the currently accepted image quality, only at half the acquisition time [5, 6]. The advantages of the half-time imaging are remarkable: with the imaging time reduced to half, artefacts caused by patient movement are to decrease and the imaging would become more conceivable for patients that find it hard to stay still during long acquisitions. Decreased imaging time would also allow more patients to be imaged per day or the current imaging time could be kept the same but the injected activity would be reduced to half, which would reduce the radiation dose and the amount of the radiopharmaceutical used. Despite its many benefits, collimator response correction has its disadvantages. Iterative reconstruction with collimator correction complicates the reconstruction algorithm markedly and leads to longer reconstruction times. This, however, is not a major problem nowadays due to the increased computing power of modern computers. Collimator response correction has also been noticed to generate severe Gibbs-like ringing artefacts

References

[1]  Y. H. Lau, B. F. Hutton, and F. J. Beekman, “Choice of collimator for cardiac SPET when resolution compensation is included in iterative reconstruction,” European Journal of Nuclear Medicine, vol. 28, no. 1, pp. 39–47, 2001.
[2]  H. C. Gifford, M. A. King, R. Glenn Wells, W. G. Hawkins, M. V. Narayanan, and P. H. Pretorius, “LROC analysis of detector-response compensation in SPECT,” IEEE Transactions on Medical Imaging, vol. 19, no. 5, pp. 463–473, 2000.
[3]  E. C. Frey, K. L. Gilland, and B. M. W. Tsui, “Application of task-based measures of image quality to optimization and evaluation of three-dimensional reconstruction-based compensation methods in myocardial perfusion SPECT,” IEEE Transactions on Medical Imaging, vol. 21, no. 9, pp. 1040–1050, 2002.
[4]  B. He, Y. Du, X. Song, W. P. Segars, and E. C. Frey, “A Monte Carlo and physical phantom evaluation of quantitative In-111 SPECT,” Physics in Medicine and Biology, vol. 50, no. 17, pp. 4169–4185, 2005.
[5]  E. G. DePuey, R. Gadiraju, J. Clark, L. Thompson, F. Anstett, and S. C. Shwartz, “Ordered subset expectation maximization and wide beam reconstruction "half-time" gated myocardial perfusion SPECT functional imaging: a comparison to "full-time" filtered backprojection,” Journal of Nuclear Cardiology, vol. 15, no. 4, pp. 547–563, 2008.
[6]  T. M. Bateman, G. V. Heller, A. I. McGhie et al., “Multicenter investigation comparing a highly efficient half-time stress-only attenuation correction approach against standard rest-stress Tc-99m SPECT imaging,” Journal of Nuclear Cardiology, vol. 16, no. 5, pp. 726–735, 2009.
[7]  S. Liu and T. H. Farncombe, “Collimator-detector response compensation in quantitative SPECT reconstruction,” in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 3955–3960, November 2007.
[8]  D. L. Snyder, M. I. Miller, L. J. Thomas, and D. G. Politte, “Noise and edge artefacts in maximum likelihood reconstruction for emission tomography,” IEEE Transactions on Medical Imaging, vol. 6, no. 3, pp. 228–238, 1987.
[9]  D. S. Lalush and B. M. W. Tsui, “Simulation evaluation of Gibbs prior distributions for use in maximum a posteriori SPECT reconstructions,” IEEE Transactions on Medical Imaging, vol. 11, no. 2, pp. 267–275, 1992.
[10]  E. V. R. Di Bella, A. B. Barclay, R. L. Eisner, and R. W. Schafer, “A comparison of rotation-based methods for iterative reconstruction algorithms,” IEEE Transactions on Nuclear Science, vol. 43, no. 6, pp. 3370–3376, 1996.
[11]  A. W. McCarthy and M. I. Miller, “Maximum likelhood SPECT in clinical computation times using mesh-connected parallel computers,” IEEE Transactions on Medical Imaging, vol. 10, no. 3, pp. 426–436, 1991.
[12]  P. J. Green, “Bayesian reconstructions from emission tomography data using a modified EM algorithm,” IEEE Transactions on Medical Imaging, vol. 9, no. 1, pp. 84–93, 1990.
[13]  S. Alenius and U. Ruotsalainen, “Generalization of median root prior reconstruction,” IEEE Transactions on Medical Imaging, vol. 21, no. 11, pp. 1413–1420, 2002.
[14]  J. E. Bowsher, H. Yuan, L. W. Hedlund et al., “Utilizing MRI information to estimate F18-FDG distributions in rat flank tumors,” in Proceedings of the IEEE Nuclear Science Symposium Conference Record, pp. 2488–2492, October 2004.
[15]  A. Atre, K. Vunckx, K. Baete, A. Reilhac, and J. Nuyts, “Evaluation of different MRI-based anatomical priors for PET brain imaging,” in Proceedings of the IEEE Nuclear Science Symposium Conference Record, pp. 2774–2780, October 2009.
[16]  C. Comtat, P. E. Kinahan, J. A. Fessler et al., “Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels,” Physics in Medicine and Biology, vol. 47, no. 1, pp. 1–20, 2002.
[17]  K. Baete, J. Nuyts, K. V. Laere et al., “Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-PET,” NeuroImage, vol. 23, no. 1, pp. 305–317, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133