全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Prevalence and Characteristics of Incidentalomas Discovered by Whole Body FDG PETCT

DOI: 10.1155/2012/476763

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objectives. To determine the prevalence of incidentalomas in a patient population with no known thyroid malignancy who underwent whole body FDG-PET/CT for staging or restaging of neoplasia. The additional aim of the study was to evaluate the feasibility of using PETCT as a screening tool for malignant thyroid incidentalomas. Methods. Retrospective review of medical records of all the thyroid exams done at our institution between January 1, 2000 and August 20, 2008. We made a criterion of PET/CT as the primary method of detection of incidentalomas. Results. From a total of 8464 thyroid exams, 156 incidentalomas were found and 40 incidentalomas underwent anatomopathology analysis, which was used as gold standard. Chi-square analysis was used to analyze the data. There is no significant association between SUV value and the prevalence of incidentalomas. Discussion. From January 1, 2000 to August 20, 2008, incidentalomas have a prevalence of 1.84% at our institution. 38% of the incidentalomas that were biopsied were characterized as representing malignant tumors. Conclusion. Focal, abnormal FDG uptake representing incidentalomas must be followed up with biopsies. It is impractical to use PET/CT as a screening tool to detect incidentalomas for the general population but it must be done in patients with history of any type of cancer. 1. Introduction Thyroid incidentalomas are newly detected thyroid nodules, discovered during a computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), or positron emission tomography (PET) exam for nonthyroid diseases. They are divided into focal and diffuse types. Focal type is defined as an area of uptake of 2-fluorodeoxyglucose (FDG) in less than one lobe, whereas diffuse type is FDG uptake in the entire thyroid gland. There are guidelines for managing palpable thyroid nodules but there are no such guidelines for nonpalpable nodules [1]. FDG-PET has a reported sensitivity of 75–90% and a specificity of 90% for detecting thyroid malignancies [2]. Whole body FDG-PET/CT combines the technology of whole body CT scan with FDG uptake localization to assess glucose utilization rates. The vast majority of solid tumors have an enhanced glycolytic rate, and they are therefore amenable of being imaged with FDG-PET. FDG-PET has become the standard of practice for staging, restaging, and assessment of therapy response in a variety of malignant solid tumors. Normal thyroid gland shows very low FDG uptake, and some data suggest that a moderate diffuse uptake can represent a normal variant [3]. However, FDG has high

References

[1]  N. G. Iyer, A. R. Shaha, C. E. Silver et al., “Thyroid incidentalomas: to treat or not to treat,” European Archives of Oto-Rhino-Laryngology, vol. 267, no. 7, pp. 1019–1026, 2010.
[2]  M. S. Cohen, N. Arslan, F. Dehdashti et al., “Risk of malignancy in thyroid incidentalomas identified by fluorodeoxyglucose-positron emission tomography,” Surgery, vol. 130, no. 6, pp. 941–946, 2001.
[3]  T. Y. Kim, W. B. Kim, J. S. Ryu, G. Gong, S. J. Hong, and Y. K. Shong, “18F-fluorodeoxyglucose uptake in thyroid from positron emission tomogram (PET) for evaluation in cancer patients: high prevalence of malignancy in thyroid PET incidentaloma,” Laryngoscope, vol. 115, no. 6, pp. 1074–1078, 2005.
[4]  Y. Liu, “Clinical significance of thyroid uptake on F18-fluorodeoxyglucose positron emission tomography,” Annals of Nuclear Medicine, vol. 23, no. 1, pp. 17–23, 2009.
[5]  K. W. Kang, S. K. Kim, H. S. Kang et al., “Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for metastasis evaluation and cancer screening in healthy subjects,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 9, pp. 4100–4104, 2003.
[6]  M. Salvatori, L. Melis, P. Castaldi et al., “Clinical significance of focal and diffuse thyroid diseases identified by 18F-fluorodeoxyglucose positron emission tomography,” Biomedicine and Pharmacotherapy, vol. 61, no. 8, pp. 488–493, 2007.
[7]  Y. K. Chen, H. J. Ding, K. T. Chen et al., “Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for cancer screening in healthy subjects,” Anticancer Research B, vol. 25, no. 2, pp. 1421–1426, 2005.
[8]  T. Ishimori, P. V. Patel, and R. L. Wahl, “Detection of unexpected additional primary malignancies with PET/CT,” Journal of Nuclear Medicine, vol. 46, no. 5, pp. 752–757, 2005.
[9]  C. Are, J. F. Hsu, H. Schoder, J. P. Shah, S. M. Larson, and A. R. Shaha, “FDG-PET detected thyroid incidentalomas: need for further investigation?” Annals of Surgical Oncology, vol. 14, no. 1, pp. 239–247, 2007.
[10]  J. G. Yi, E. M. Marom, R. F. Munden et al., “Focal uptake of fluorodeoxyglucose by the thyroid in patients undergoing initial disease staging with combined PET/CT for non-small cell lung cancer,” Radiology, vol. 236, no. 1, pp. 271–275, 2005.
[11]  J. Y. Choi, K. S. Lee, H.-J. Kim et al., “Focal thyroid lesions incidentally identified by integrated 18F-FDG PET/CT: clinical significance and improved characterization,” Journal of Nuclear Medicine, vol. 47, no. 4, pp. 609–615, 2006.
[12]  S. Y. Nam, J. L. Roh, J. S. Kim, J. H. Lee, S. H. Choi, and S. Y. Kim, “Focal uptake of 18F-fluorodeoxyglucose by thyroid in patients with nonthyroidal head and neck cancers,” Clinical Endocrinology, vol. 67, no. 1, pp. 135–139, 2007.
[13]  T. V. Bogsrud, D. Karantanis, M. A. Nathan et al., “The value of quantifying 18F-FDG uptake in thyroid nodules found incidentally on whole-body PET-CT,” Nuclear Medicine Communications, vol. 28, no. 5, pp. 373–381, 2007.
[14]  G. Wolf, R. M. Aigner, G. Schaffler, T. Schwarz, and P. Krippl, “Pathology results in [18F]fluorodeoxyglucose positron emission tomography of the thyroid gland,” Nuclear Medicine Communications, vol. 24, no. 12, pp. 1225–1230, 2003.
[15]  Q. D. Chu, M. S. Connor, D. L. Lilien, L. W. Johnson, R. H. Turnage, and B. D. L. Li, “Positron emission tomography (PET) positive thyroid incidentaloma: the risk of malignancy observed in a tertiary referral center,” American Surgeon, vol. 72, no. 3, pp. 272–275, 2006.
[16]  J. S. Bae, B. J. Chae, W. C. Park et al., “Incidental thyroid lesions detected by FDG-PET/CT: prevalence and risk of thyroid cancer,” World Journal of Surgical Oncology, vol. 7, p. 63, 2009.
[17]  R. J. Silver and S. Parangi, “Management of thyroid incidentalomas,” Surgical Clinics of North America, vol. 84, no. 3, pp. 907–919, 2004.
[18]  E. Papini, R. Guglielmi, A. Bianchini et al., “Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-doppler features,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 5, pp. 1941–1946, 2002.
[19]  K. Ohba, S. Nishizawa, A. Matsushita et al., “High incidence of thyroid cancer in focal thyroid incidentaloma detected by 18F-fluorodexyglucose positron emission tomography in relatively young healthy subjects: results of 3-year follow-up,” Endocrine Journal, vol. 57, no. 5, pp. 395–401, 2010.
[20]  A. Yoshihara, O. Isozaki, Y. Okubo, M. Maki, K. Kusakabe, and K. Takano, “Huge thyroid uptake of 18F-FDG in a patient with Hashimoto's thyroiditis referred for a malignant thyroid lesion,” Thyroid, vol. 18, no. 5, pp. 579–580, 2008.
[21]  J. Jin, S. M. Wilhelm, and C. R. McHenry, “Incidental thyroid nodule: patterns of diagnosis and rate of malignancy,” American Journal of Surgery, vol. 197, no. 3, pp. 320–324, 2009.
[22]  R. V. Datta, N. J. Petrelli, and J. Ramzy, “Evaluation and management of incidentally discovered thyroid nodules,” Surgical Oncology, vol. 15, no. 1, pp. 33–42, 2006.
[23]  D. L. King, B. C. Stack, P. M. Spring, R. Walker, and D. L. Bodenner, “Incidence of thyroid carcinoma in fluorodeoxyglucose positron emission tomography-positive thyroid incidentalomas,” Otolaryngology-Head and Neck Surgery, vol. 137, no. 3, pp. 400–404, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413