全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Authentication of Algorithm to Detect Metastases in Men with Prostate Cancer Using ICD-9 Codes

DOI: 10.1155/2012/970406

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Metastasis is a crucial endpoint for patients with prostate cancer (PCa), but currently lacks a validated claims-based algorithm for detection. Objective. To develop an algorithm using ICD-9 codes to facilitate accurate reporting of PCa metastases. Methods. Medical records from 300 men hospitalized at Robert Wood Johnson University Hospital for PCa were reviewed. Using the presence of metastatic PCa on chart review as the gold standard, two algorithms to detect metastases were compared. Algorithm A used ICD-9 codes 198.5 (bone metastases), 197.0 (lung metastases), 197.7 (liver metastases), or 198.3 (brain and spinal cord metastases) to detect metastases, while algorithm B used only 198.5. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the two algorithms were determined. Kappa statistics were used to measure agreement rates between claim data and chart review. Results. Algorithm A demonstrated a sensitivity, specificity, PPV, and NPV of 95%, 100%, 100%, and 98.7%, respectively. Corresponding numbers for algorithm B were 90%, 100%, 100%, and 97.5%, respectively. The agreement rate is 96.8% for algorithm A and 93.5% for algorithm B. Conclusions. Using ICD-9 codes 198.5, 197.0, 197.7, or 198.3 in detecting the presence of PCa metastases offers a high sensitivity, specificity, PPV, and NPV value. 1. Introduction Prostate cancer is a particular diagnostic and therapeutic dilemma because while it is so prevalent among older men, it typically progresses slowly and thus patients often die of other unrelated causes. The five-year relative survival rate for localized and regional prostate cancer is 100%, regardless of race, and 99% for all stages of prostate cancer [1, 2]. Often patients with uncontrolled prostate cancer will have a rising PSA but no clinical symptoms until the development of metastases [3–6]. Prostate cancer metastases most commonly travel to bone, and less commonly to other sites such as brain, bladder, lung, and liver. Once metastases develop, significant morbidity arises and the five-year survival rate falls precipitously to 32% [2]. It is not an exaggeration to say that the development of metastases is a seminal event in the life of a prostate cancer patient and that it often heralds the true onset of morbidity from their disease. The morbidity ensuing from metastases can include severe pain, structural instability of affected bones, spinal cord compression, and neurological compromise [7, 8]. Quality of life is further diminished by the therapeutic measures taken at this point,

References

[1]  A. Merglen, F. Schmidlin, G. Fioretta et al., “Short- and long-term mortality with localized prostate cancer,” Archives of Internal Medicine, vol. 167, no. 18, pp. 1944–1950, 2007.
[2]  A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA: A Cancer Journal for Clinicians, vol. 59, no. 4, pp. 225–249, 2009.
[3]  R. J. Volk, A. R. Cass, and S. J. Spann, “A randomized controlled trial of shared decision making for prostate cancer screening,” Archives of Family Medicine, vol. 8, no. 4, pp. 333–340, 1999.
[4]  C. M. Coley, M. J. Barry, C. Fleming, and A. G. Mulley, “Early detection of prostate cancer: part I: prior probability and effectiveness of tests. The American College of Physicians,” Annals of Internal Medicine, vol. 126, no. 5, pp. 394–406, 1997.
[5]  B. I. Carlin and G. L. Andriole, “The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma,” Cancer, vol. 88, no. 12, pp. 2989–2994, 2000.
[6]  D. E. Neal, H. Y. Leung, P. H. Powell, F. C. Hamdy, and J. L. Donovan, “Unanswered questions in screening for prostate cancer,” European Journal of Cancer, vol. 36, no. 10, pp. 1316–1321, 2000.
[7]  M. J. Zelefsky, J. A. Eastham, A. M. Cronin et al., “Metastasis after radical prostatectomy or external beam radiotherapy for patients with clinically localized prostate cancer: a comparison of clinical cohorts adjusted for case mix,” Journal of Clinical Oncology, vol. 28, no. 9, pp. 1508–1513, 2010.
[8]  J. Pinski and T. B. Dorff, “Prostate cancer metastases to bone: pathophysiology, pain management, and the promise of targeted therapy,” European Journal of Cancer, vol. 41, no. 6, pp. 932–940, 2005.
[9]  M. G. Sanda, R. L. Dunn, J. Michalski et al., “Quality of life and satisfaction with outcome among prostate-cancer survivors,” The New England Journal of Medicine, vol. 358, no. 12, pp. 1250–1261, 2008.
[10]  J. A. Clark, N. P. Wray, and C. M. Ashton, “Living with treatment decisions: regrets and quality of life among men treated for metastatic prostate cancer,” Journal of Clinical Oncology, vol. 19, no. 1, pp. 72–80, 2001.
[11]  N. Y. Piper, L. Kusada, R. Lance, J. Foley, J. Moul, and T. Seay, “Adenocarcinoma of the prostate: an expensive way to die,” Prostate Cancer and Prostatic Diseases, vol. 5, no. 2, pp. 164–166, 2002.
[12]  S. Hummel, E. L. Simpson, P. Hemingway, M. D. Stevenson, and A. Rees, “Intensity-modulated radiotherapy for the treatment of prostate cancer: a systematic review and economic evaluation,” Health Technology Assessment, vol. 14, no. 47, pp. 1–108, 2010.
[13]  P. M. Beemsterboer, H. J. de Koning, E. Birnie, et al., “Advanced prostate cancer: course, care, and cost implications,” The Prostate, vol. 40, no. 2, pp. 97–104, 1999.
[14]  A. M. Bayoumi, A. D. Brown, and A. M. Garber, “Cost-effectiveness of androgen suppression therapies in advanced prostate cancer,” Journal of the National Cancer Institute, vol. 92, no. 21, pp. 1731–1739, 2000.
[15]  C. S. Higano, “Side effects of androgen deprivation therapy: monitoring and minimizing toxicity,” Urology, vol. 61, no. 2, pp. 32–38, 2003.
[16]  M. J. Zelefsky, Z. Fuks, M. Hunt et al., “High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients,” International Journal of Radiation Oncology, Biology, Physics, vol. 53, no. 5, pp. 1111–1116, 2002.
[17]  M. R. Storey, A. Pollack, G. Zagars, L. Smith, J. Antolak, and I. Rosen, “Complications from radiotherapy dose escalation in prostate cancer: preliminary results of a randomized trial,” International Journal of Radiation Oncology, Biology, Physics, vol. 48, no. 3, pp. 635–642, 2000.
[18]  R. E. Coleman, “Metastatic bone disease: clinical features, pathophysiology and treatment strategies,” Cancer Treatment Reviews, vol. 27, no. 3, pp. 165–176, 2001.
[19]  T. L. Krupski, K. A. Foley, O. Baser, S. Long, D. Macarios, and M. S. Litwin, “Health care cost associated with prostate cancer, androgen deprivation therapy and bone complications,” Journal of Urology, vol. 178, no. 4, pp. 1423–1428, 2007.
[20]  H. T. S?rensen, S. Sabroe, and J. Olsen, “A framework for evaluation of secondary data sources for epidemiological research,” International Journal of Epidemiology, vol. 25, no. 2, pp. 435–442, 1996.
[21]  D. G. Altman and J. M. Bland, “Diagnostic tests 2: predictive values,” British Medical Journal, vol. 309, no. 6947, p. 102, 1994.
[22]  J. Kelsey, Methods in Observational Epidemiology, Oxford University Press, New York, NY, USA, 1996.
[23]  C. R. Pound, A. W. Partin, M. A. Eisenberger, D. W. Chan, J. D. Pearson, and P. C. Walsh, “Natural history of progression after PSA elevation following radical prostatectomy,” The Journal of the American Medical Association, vol. 281, no. 17, pp. 1591–1597, 1999.
[24]  A. Konski, “Radiotherapy is a cost-effective palliative treatment for patients with bone metastasis from prostate cancer,” International Journal of Radiation Oncology, Biology, Physics, vol. 60, no. 5, pp. 1373–1378, 2004.
[25]  A. O. Jensen, M. Norgaard, M. Yong, et al., “Validity of the recorded International Classification of Diseases, 10th edition diagnoses codes of bone metastases and skeletal-related events in breast and prostate cancer patients in the Danish National Registry of Patients,” Clinical Epidemiology, vol. 1, pp. 101–108, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413