全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Two-Step Galileo E1 CBOC Tracking Algorithm: When Reliability and Robustness Are Keys!

DOI: 10.1155/2012/135401

Full-Text   Cite this paper   Add to My Lib

Abstract:

The majority of 3G mobile phones have an integrated GPS chip enabling them to calculate a navigation solution. But to deliver continuous and accurate location information, the satellite tracking process has to be stable and reliable. This is still challenging, for example, in heavy multipath and non-line of sight (NLOS) environments. New families of Galileo and GPS navigation signals, such as Alternate Binary Offset Carrier (AltBOC), Composite Binary Offset Carrier (CBOC), and Time-Multiplex Binary Offset Carrier (TMBOC), will bring potential improvements in the pseudorange calculation, including more signal power, better multipath mitigation capabilities, and overall more robust navigation. However, GNSS signal tracking strategies have to be more advanced in order to profit from the enhanced properties of the new signals.In this paper, a tracking algorithm designed for Galileo E1 CBOC signal that consists of two steps, coarse and fine, with different tracking parameters in each step, is presented and analyzed with respect to tracking accuracy, sensitivity and robustness. The aim of this paper is therefore to provide a full theoretical analysis of the proposed two-step tracking algorithm for Galileo E1 CBOC signals, as well as to confirm the results through simulations as well as using real Galileo satellite data. 1. Introduction New GPS and Galileo signals use new modulations, such as AltBOC, CBOC, and TMBOC that have the potential to improve navigation through advanced signal properties, such as more signal power, better multipath mitigation capabilities, and overall improved signal cross-correlation properties. Certainly, a major innovation brought by the new modulation schemes consists of the presence of two distinct components, namely, the data and pilot channels that carry two different pieces of information. The data channel contains the navigation message, whereas the pilot channel is dataless, allowing long coherent signal integration that, in turn, allows more precise determination of the ranging information. For carrier tracking, the presence of a pilot channel enables the combined use of pure PLL (Phase Lock Loop) discriminators and longer coherent integration time. Code tracking can be organized as data/pilot collaborative tracking [1, 2], where two channels (data and pilot) are used in the estimation of the code error, decreasing the thermal noise error and improving overall tracking. Several tracking algorithms proposed for Galileo E1 CBOC signals were derived from tracking schemes developed for BPSK (Binary Shift Keying) and B O C ( 1 ,

References

[1]  A. Jovanovic, C. Mongrédien, C. Botteron, Y. Tawk, G. Rohmer, and P. A. Farine, “Requirements and analysis for a robust E1 Galileo tracking algorithm in the scope of the GAMMA-A project,” in Proceedings of the Institute of Navigation—International Technical Meeting 2010 (ION ITM '10), pp. 973–985, San Diego, Calif, USA, January 2010.
[2]  D. Borio, C. Mongrédien, and G. Lachapelle, “Collaborative code tracking of composite GNSS signals,” IEEE Journal on Selected Topics in Signal Processing, vol. 3, no. 4, pp. 613–626, 2009.
[3]  O. Julien, Design of Galileo L1F receiver tracking loops [Thesis], University of Calgary, 2005.
[4]  P. Fine and W. Wilson, “Tracking algorithm for GPS offset carrier signals,” in Proceedings of the US Institute of Navigation NTM Conference, San Diego, Calif, USA, January 1999.
[5]  M. S. Hodgart, P. D. Blunt, and M. Unwin, “Double estimator—a new receiver principle for tracking BOC signals,” Inside GNSS, pp. 26–36, 2008.
[6]  M. S. Hodgart, R. M. Weiler, and M. Unwin, “A triple estimating receiver of multiplexed binary offset carrier (MBOC) modulated signals,” in Proceedings of the 21st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS '08), pp. 2295–2304, Savannah, Ga, USA, September 2008.
[7]  O. Julien and C. Macabiau, “Two for one—tracking Galileo CBOC signal with TMBOC,” Inside GNSS, 2007.
[8]  O. Julien and C. Macabiau, “On potential CBOC/MBOC common receiver arcitectures,” in Proceedings of the International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS ITM '07), p. 1843, ENAC, 2007.
[9]  Galileo Joint Undertaking, Galileo Open Service Signal in Space InterfaceControl Document, GAL OS SIS ICD, Draft 1, 2010.
[10]  A. Jovanovic, C. Mongrédien, C. Botteron, Y. Tawk, G. Rohmer, and P. A. Farine, “Implementation and robustness analysis of the two-step CBOC tracking algorithm in the scope of the GAMMA-A project,” in Proceedings of the Proceedings of the ENC GNSS, Braunscheig, Germany, October 2010.
[11]  A. Jovanovic, C. Mongrédien, C. Botteron, Y. Tawk, G. Rohmer, and P. A. Farine, “Implementation and optimization of a Galileo E1 two-step tracking algorithm using data/pilot combining and extended integration time,” in Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS '11), Portland, Ore, USA, September 2011.
[12]  Y. Tawk, A. Jovanovic, J. Leclere, C. Botteron, and P. A. Farine, “A new FFT-based algorithm for secondary code acquisition for Galileo signals,” in Proceedings of the IEEE Vehicular Technology Conference (VTC '11), San Francisco, Calif, USA, September 2011.
[13]  P. B. Anantharamu, D. Borio, and G. Lachapelle, “Pre-filtering, side-peak rejection and mapping: several solutions for unambiguous BOC tracking,” in Proceedings of the 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation 2009 (ION GNSS '09), pp. 3182–3195, Savannah, Ga, USA, September 2009.
[14]  J. C. Juang and T. L. Kao, “Generalized discriminator and its applications in GNSS signal tracking,” in Proceedings of the 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation 2010 (ION GNSS '10), pp. 3251–3257, Portland, Ore, USA, September 2010.
[15]  C. Mongrédien, M. Overbeck, and G. Rohmer, “Development and integration of a robust signal tracking module for the triple-frequency dual-constellation GAMMA-A receiver,” in Proceedings of the 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation 2010 (ION GNSS '10), pp. 2808–2819, Portland, Ore, USA, September 2010.
[16]  M. S. Braasch and G. A. Mcgraw, “GNSS multipath mitigation using gated and high resolution correlator concepts,” in Proceedings of the National Technical Meeting of the Satellite Division of the Institute of Navigation (ION NTM '99), pp. 333–342, San Diego, Calif, USA, January 1999.
[17]  http://www.spirent.com/Solutions-Directory/GSS8000.aspx.
[18]  http://www.iis.fraunhofer.de/.
[19]  E. D. Kaplan and C. J. Hegarty, Understanding GPS—Principles and Applications, Artech House, 1996.
[20]  N. Bertelsen and K. Borre, A Software Defined GPS and Galileo Receiver, Birkhauser, Boston, Mass, USA, 2007.
[21]  J. W. Betz and K. R. Kolodziejski, “Generalized theory of code tracking with an early-late discriminator part II: noncoherent processing and numerical results,” IEEE Transactions on Aerospace and Electronic Systems, vol. 45, no. 4, article 1551, 2009.
[22]  A. Jovanovic, Y. Tawk, C. Botteron, and P. A. Farine, “Multipath mitigation techniques for CBOC, TMBOC and AltBOC signals using advanced correlators architectures,” in Proceedings of the IEEE/ION Position, Location and Navigation Symposium (PLANS '10), pp. 1127–1136, Palm Springs, Calif, USA, May 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413