全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cognitive Outcome of Status Epilepticus in Children

DOI: 10.1155/2012/984124

Full-Text   Cite this paper   Add to My Lib

Abstract:

Epileptic encephalopathy encompasses conditions in which cognitive, motor, or sensory deficits result as a consequence of epileptic activity defining certain syndromes. It therefore represents a more severe subset of epilepsy, which can be generally characterized as frequent or severe seizures leading to cerebral dysfunction. This disturbance in cerebral functioning can in turn hinder, somewhat dramatically, cognitive development and further impact the future lives of patients. In this paper, we describe the cognitive consequences of status epilepticus in children and in adults in the context of plasticity theories. Recent studies maintain that consequences of SE may be severe cognitive sequelae, especially in early life. Since the residual consequences of SE in adulthood seem less detrimental and long-lasting, we argue that early life insults, such as those created by SE, during a rapid period of development and functional specialization, result in specific cognitive deficits dependent on the sensitive period at which SE occurred. 1. Introduction Epileptic encephalopathy encompasses conditions in which cognitive, motor, or sensory deficits result as a consequence of epileptic activity defining certain syndromes [1]. It therefore represents a more severe subset of epilepsy, which can be generally characterized as frequent or severe seizures leading to cerebral dysfunction. This disturbance in cerebral functioning can in turn hinder, somewhat dramatically, cognitive development and further impact the future lives of patients. In this paper, we consider status epilepticus as an epileptic encephalopathy owing to its impact on cognitive development in early life. 2. Status Epilepticus (SE) Status Epilepticus (SE) is a medical epileptic emergency characterized by either rapidly repeating seizures without recovery or regain of consciousness between episodes, or prolonged continuous epileptic activity, both creating a fixed or lasting condition [2, 3]. It is an event rather than a syndrome. It is accepted that the duration of an episode of SE is 30 minutes or more, period after which cerebral functioning is highly probable of being affected and immediate medical attention is needed [4]. Recently, the notions of impending SE and established SE have been introduced [5] in order to provide the best possible care for patients presenting with SE. In adults, patients presenting a seizure lasting more than five minutes can be designated as impending SE. In children, impending seizures are considered when seizures last between 5 and 10 minutes [5]. The prevalence of

References

[1]  O. Dulac, “Epileptic encephalopathy,” Epilepsia, vol. 42, no. 3, pp. 23–26, 2001.
[2]  H. Gestaut, Dictionary of Epilepsy. Part I. Definition, World Health Organization, Geneva, Switzerland, 1973.
[3]  H. Gastaut, “A new type of epilepsy: benign partial epilepsy of childhood with occipital spike-waves,” Clinical EEG Electroencephalography, vol. 13, no. 1, pp. 13–22, 1982.
[4]  W. A. Hauser, et al., “Status epilepticus, frquency, etiology, and neurological sequelea,” in Status Epilepticus, A. Deglado-Escueta, C. Waterslain, and D. Treiman, Eds., pp. 3–14, Raven Press, New York, NY, USA, 1983.
[5]  E. R. Freilich, J. M. Jones, W. D. Gaillard et al., “Novel SCN1A mutation in a proband with malignant migrating partial seizures of infancy,” Archives of Neurology, vol. 68, no. 5, pp. 665–671, 2011.
[6]  R. F. Chin, B. G. Neville, C. Peckham, A. Wade, H. Bedford, and R. C. Scott, “Treatment of community-onset, childhood convulsive status epilepticus: a prospective, population-based study,” The Lancet Neurology, vol. 7, no. 8, pp. 696–703, 2008.
[7]  M. Sadarangani, C. Seaton, J. A. G. Scott et al., “Incidence and outcome of convulsive status epilepticus in Kenyan children: a cohort study,” The Lancet Neurology, vol. 7, no. 2, pp. 145–150, 2008.
[8]  I. Nishiyama, Y. Ohtsuka, T. Tsuda et al., “An epidemiological study of children with status epilepticus in Okayama, Japan,” Epilepsia, vol. 48, no. 6, pp. 1133–1137, 2007.
[9]  S. Shinnar, J. M. Pellock, S. L. Moshé et al., “In whom does status epilepticus occur: age-related differences in children,” Epilepsia, vol. 38, no. 8, pp. 907–914, 1997.
[10]  C. G. Wasterlain, D. G. Fujikawa, L. Penix, and R. Sankar, “Pathophysiological mechanisms of brain damage from status epilepticus,” Epilepsia, vol. 34, no. 1, pp. S37–S53, 1993.
[11]  R. C. Scott, R. A. H. Surtees, and B. G. R. Neville, “Status epilepticus: pathophysiology, epidemiology, and outcomes,” Archives of Disease in Childhood, vol. 79, no. 1, pp. 73–77, 1998.
[12]  J. M. Pellock, “Status epilepticus in children: update and review,” Journal of Child Neurology, vol. 9, pp. 27–35, 1994.
[13]  D. H. Lowenstein and B. K. Alldredge, “Status epilepticus,” New England Journal of Medicine, vol. 338, no. 14, pp. 970–976, 1998.
[14]  J. Maytal, S. Shinnar, S. L. Moshe, and L. A. Alvarez, “Low morbidity and mortality of status epilepticus in children,” Pediatrics, vol. 83, no. 3, pp. 323–331, 1989.
[15]  N. B. Fountain, “Status epilepticus: risk factors and complications,” Epilepsia, vol. 41, no. 6, pp. S23–S30, 2000.
[16]  S. Shinnar, D. C. Hesdorffer, D. R. Nordli et al., “Phenomenology of prolonged febrile seizures: results of the FEBSTAT study,” Neurology, vol. 71, no. 3, pp. 170–176, 2008.
[17]  M. Kennar, “Age and other factor in motor recovery from precentral lesions in monkeys,” American Journal of Physiology, vol. 115, pp. 138–146, 1936.
[18]  B. T. Woods, “The restricted effects of right-hemisphere lesions after age one; Wechsler test data,” Neuropsychologia, vol. 18, no. 1, pp. 65–70, 1980.
[19]  C. C. Giza, M. L. Prins, D. A. Hovda, H. R. Herschman, and J. D. Feldman, “Genes preferentially induced by depolarization after concussive brain injury: effects of age and injury severity,” Journal of Neurotrauma, vol. 19, no. 4, pp. 387–402, 2002.
[20]  P. Satz, E. Strauss, M. Hunter, and J. Wada, “Re-examination of the crowding hypothesis: effects of age of onset,” Neuropsychology, vol. 8, no. 2, pp. 255–262, 1994.
[21]  H. Lansdell, “Verbal and nonverbal factors in right-hemisphere speech: relation to early neurological history,” Journal of Comparative and Physiological Psychology, vol. 69, no. 4, pp. 734–738, 1969.
[22]  V. Anderson and C. Moore, “Age at injury as a predictor of outcome following pediatric head injury,” Child Neuropsychology, vol. 1, no. 3, pp. 187–202, 1995.
[23]  V. Anderson, L. Bond, C. Catroppa, K. Grimwood, E. Keir, and T. Nolan, “Childhood bacterial meningitis: impact of age at illness and acute medical complications on long term outcome,” Journal of the International Neuropsychological Society, vol. 3, no. 2, pp. 147–158, 1997.
[24]  P. Bittigau, M. Sifringer, U. Felderhoff-Mueser, and C. Ikonomidou, “Apoptotic neurodegeneration in the context of traumatic injury to the developing brain,” Experimental and Toxicologic Pathology, vol. 56, no. 1-2, pp. 83–89, 2004.
[25]  M. Dennis, “Language and the young damaged brain,” in Clinical Neuropsychology and Brain Function: Research, Measurement and Practice, T. Boll and Bryant, Eds., pp. 89–123, American Psychological Association, Washington, DC, USA, 1989.
[26]  P. Schwartzkroin, “Plasticity and repair in the immature central nervous system,” in Brain Development and Epilepsy, P. Schwartzkroin, S. Moshé, J. Noebels, and J. Swann, Eds., pp. 234–267, Oxford University Press, New York, NY, USA.
[27]  V. Anderson, M. Spencer-Smith, L. Coleman et al., “Children's executive functions: are they poorer after very early brain insult,” Neuropsychologia, vol. 48, no. 7, pp. 2041–2050, 2010.
[28]  A. M. Grigonis and E. Hazel Murphy, “The effects of epileptic cortical activity on the development of callosal projections,” Developmental Brain Research, vol. 77, no. 2, pp. 251–255, 1994.
[29]  M. S. C. Thomas and M. H. Johnson, “New advances in understanding sensitive periods in brain development,” Current Directions in Psychological Science, vol. 17, no. 1, pp. 1–5, 2008.
[30]  H. Kubová, R. Druga, K. Lukasiuk et al., “Status epilepticus causes necrotic damage in the mediodorsal nucleus of the thalamus in immature rats,” Journal of Neuroscience, vol. 21, no. 10, pp. 3593–3599, 2001.
[31]  C. G. Wasterlain, “Effects of neonatal status epilepticus on rat brain development,” Neurology, vol. 26, no. 10, pp. 975–986, 1976.
[32]  J. Corsellis and C. Burton, “Neuropathology of status epilepticus in humans,” in Status Epilepticus: Mechanisms of Brain Damage and Treatment. Advances in Neurology, A. V. Deglado-Escueta, C. Wasterlain, D. Treiman, and R. Porter, Eds., vol. 34, pp. 129–139, Raven Press, New York, NY, USA.
[33]  D. G. Fujikawa, H. H. Itabashi, A. Wu, and S. S. Shinmei, “Status epilepticus-induced neuronal loss in humans without systemic complications or epilepsy,” Epilepsia, vol. 41, no. 8, pp. 981–991, 2000.
[34]  R. C. Scott, D. G. Gadian, M. D. King et al., “Magnetic resonance imaging findings within 5 days of status epilepticus in childhood,” Brain, vol. 125, no. 9, pp. 1951–1959, 2002.
[35]  B. S. Meldrum and J. B. Brierley, “Prolonged epileptic seizures in primates. Ischemic cell change and its relation to ictal physiological events,” Archives of Neurology, vol. 28, no. 1, pp. 10–17, 1973.
[36]  O. T. Wolf, V. Dyakin, A. Patel et al., “Volumetric structural magnetic resonance imaging (MRI) of the rat hippocampus following kainic acid (KA) treatment,” Brain Research, vol. 934, no. 2, pp. 87–96, 2002.
[37]  J. Nairism?gi, A. Pitk?nen, M. I. Kettunen, R. A. Kauppinen, and H. Kubova, “Status epilepticus in 12-day-old rats leads to temporal lobe neurodegeneration and volume reduction: a histologic and MRI study,” Epilepsia, vol. 47, no. 3, pp. 479–488, 2006.
[38]  H. G. Niessen, F. Angenstein, S. Vielhaber et al., “Volumetric magnetic resonance imaging of functionally relevant structural alterations in chronic epilepsy after pilocarpine-induced status epilepticus in rats,” Epilepsia, vol. 46, no. 7, pp. 1021–1026, 2005.
[39]  M. H. Scantlebury, J. G. Heida, H. J. Hasson et al., “Age-dependent consequences of status epilepticus: animal models,” Epilepsia, vol. 48, no. 2, pp. 75–82, 2007.
[40]  E. Ericson, J. Samuelsson, and S. Ahlenius, “Photocell measurements of rat motor activity. A contribution to sensitivity and variation in behavioral observations,” Journal of Pharmacological Methods, vol. 25, no. 2, pp. 111–122, 1991.
[41]  H. Kubová, P. Mare?, L. Suchomelová, G. Bro?ek, R. Druga, and A. Pitk?nen, “Status epilepticus in immature rats leads to behavioural and cognitive impairment and epileptogenesis,” European Journal of Neuroscience, vol. 19, no. 12, pp. 3255–3265, 2004.
[42]  C. J. Müller, I. Gr?ticke, M. Bankstahl, and W. L?scher, “Behavioral and cognitive alterations, spontaneous seizures, and neuropathology developing after a pilocarpine-induced status epilepticus in C57BL/6 mice,” Experimental Neurology, vol. 219, no. 1, pp. 284–297, 2009.
[43]  N. F. Dos Santos, R. M. Arida, E. M. T. Filho, M. R. Priel, and E. A. Cavalheiro, “Epileptogenesis in immature rats following recurrent status epilepticus,” Brain Research Reviews, vol. 32, no. 1, pp. 269–276, 2000.
[44]  K. Majak and A. Pitk?nen, “Do seizures cause irreversible cognitive damage? Evidence from animal studies,” Epilepsy and Behavior, vol. 5, no. 1, pp. S35–S44, 2004.
[45]  W. K?lfen, K. Pehle, and S. K?nig, “Is the long-term outcome of children following febrile convulsions favorable?” Developmental Medicine and Child Neurology, vol. 40, no. 10, pp. 667–671, 1998.
[46]  M. Dam, “Children with epilepsy: the effect of seizures, syndromes, and etiological factors on cognitive functioning,” Epilepsia, vol. 31, no. 4, pp. S26–S29, 1990.
[47]  A. Van Esch, I. R. Ramlal, H. A. Van Steensel-Moll, E. W. Steyerberg, and G. Derksen-Lubsen, “Outcome after febrile status epilepticus,” Developmental Medicine and Child Neurology, vol. 38, no. 1, pp. 19–24, 1996.
[48]  J. Aicardi and J. J. Chevrie, “Convulsive status epilepticus in infants and children. A study of 239 cases,” Epilepsia, vol. 11, no. 2, pp. 187–197, 1970.
[49]  J. Y. Yager, M. Cheang, and S. S. Seshia, “Status epilepticus in children,” Canadian Journal of Neurological Sciences, vol. 15, no. 4, pp. 402–405, 1988.
[50]  J. Lacroix, C. Deal, M. Gauthier, E. Rousseau, and C. A. Farrell, “Admissions to a pediatric intensive care unit for status epilepticus: a 10-year experience,” Critical Care Medicine, vol. 22, no. 5, pp. 827–832, 1994.
[51]  H. Roy, S. Lippé, F. Lussier et al., “Developmental outcome after a single episode of status epilepticus,” Epilepsy and Behavior, vol. 21, no. 4, pp. 430–436, 2011.
[52]  A. Diamond and P. Goldman-Rakic, “Comparative development in human infants and infant rhesus monkeys of cognitive functions that depend on the prefrontal cortex,” Society for Neuroscience, vol. 12, p. 742, 1986.
[53]  J. M. Fuster, “Frontal lobe and cognitive development,” Journal of Neurocytology, vol. 31, no. 3–5, pp. 373–385, 2002.
[54]  K. Teffer and K. Semendeferi, “Human prefrontal cortex: evolution, development and pathology,” Progress in Brain Research, vol. 195, pp. 191–218, 2012.
[55]  N. Adachi, K. Kanemoto, R. Muramatsu et al., “Intellectual prognosis of status epilepticus in adult epilepsy patients: analysis with Wechsler Adult Intelligence Scale-Revised,” Epilepsia, vol. 46, no. 9, pp. 1502–1509, 2005.
[56]  C. B. Dodrill and A. J. Wilensky, “Intellectual impairment as an outcome of status epilepticus,” Neurology, vol. 40, no. 5, pp. 23–27, 1990.
[57]  W. Van Paesschen, K. Porke, K. Fannes et al., “Cognitive deficits during status epilepticus and time course of recovery: a case report,” Epilepsia, vol. 48, no. 10, pp. 1979–1983, 2007.
[58]  K. J. Eriksson and M. J. Koivikko, “Status epilepticus in children: aetiology, treatment, and outcome,” Developmental Medicine and Child Neurology, vol. 39, no. 10, pp. 652–658, 1997.
[59]  M. Raspall-Chaure, R. F. Chin, B. G. Neville, and R. C. Scott, “Outcome of paediatric convulsive status epilepticus: a systematic review,” Lancet Neurology, vol. 5, no. 9, pp. 769–779, 2006.
[60]  J. Maytal and S. Shinnar, “Febrile status epilepticus,” Pediatrics, vol. 86, no. 4, pp. 611–616, 1990.
[61]  J. Aicardi, Epilepsy in Children, Raven Press, New York, NY, USA, 1986.
[62]  C. M. DeGiorgio, P. S. Gott, A. L. Rabinowicz, C. N. Heck, T. D. Smith, and J. D. Correale, “Neuron-specific enolase, a marker of acute neuronal injury, is increased in complex partial status epilepticus,” Epilepsia, vol. 37, no. 7, pp. 606–609, 1996.
[63]  J. Aicardi, J. Amsili, and J. J. Chevrie, “Acute hemiplegia in infancy and childhood,” Developmental Medicine and Child Neurology, vol. 11, no. 2, pp. 162–173, 1969.
[64]  B. Meldrum, “Metabolic factors during prolonged seizures and their relationship to nerve cell death,” in Status Epilepticus: Mechanisms of Brain Damage and Treatment, A. Delgado-Escueta, C. Waterlain, D. Treiman, and R. Porter, Eds., pp. 261–275, Raven Press, New York, NY, USA, 1982.
[65]  V. Gross-Tsur and S. Shinnar, “Convulsive status epilepticus in children,” Epilepsia, vol. 34, no. 1, pp. S12–S20, 1993.
[66]  S. Shinnar, J. Maytal, L. Krasnoff, and S. L. Moshe, “Recurrent status epilepticus in children,” Annals of Neurology, vol. 31, no. 6, pp. 598–604, 1992.
[67]  P. Kotagal, A. D. Rothner, G. Erenberg, R. P. Cruse, and E. Wyllie, “Complex partial seizures of childhood onset. A five-year follow-up study,” Archives of Neurology, vol. 44, no. 11, pp. 1177–1180, 1987.
[68]  G. L. Holmes, Y. Ben-Ari, and A. Zipursky, “The neurobiology and consequences of epilepsy in the developing brain,” Pediatric Research, vol. 49, no. 3, pp. 320–325, 2001.
[69]  G. Cantu-Reyna, D. Stuss, R. Broughton, and A. Guberman, “Nonconvulsive generalized status epilepticus: clinical features, neuropsychological testing and long-term follow-up,” Neurology, vol. 36, no. 10, pp. 1284–1291, 1986.
[70]  B. Hermann, J. Jones, D. Jackson, and M. Seidenberg, “Starting at the beginning: the neuropsychological status of children with new-onset epilepsies,” Epileptic Disorders, vol. 14, no. 1, pp. 12–21, 2012.
[71]  G. Stores, “Effects on learning of “subclinical” seizure discharge,” in Education and Epilepsy, A. P. Aldenkamp, H. Meinardi, and G. Stores, Eds., pp. 14–21, Swets and Zeitlinger, Lisse, The Netherlands, 1987.
[72]  R. K. Singh, S. Stephens, M. M. Berl et al., “Prospective study of new-onset seizures presenting as status epilepticus in childhood,” Neurology, vol. 74, no. 8, pp. 636–642, 2010.
[73]  S. N. Duffy, K. J. Craddock, T. Abel, and P. V. Nguyen, “Environmental enrichment modifies the PKA-dependence of hippocampal LTP and improves hippocampus-dependent memory,” Learning and Memory, vol. 8, no. 1, pp. 26–34, 2001.
[74]  A. R. Towne, J. M. Pellock, D. Ko, and R. J. DeLorenzo, “Determinants of mortality in status epilepticus,” Epilepsia, vol. 35, no. 1, pp. 27–34, 1994.
[75]  T. Deonna, “Cognitive and behavioral disturbances as epileptic manifestations in children: an overview,” Seminars in Pediatric Neurology, vol. 2, no. 4, pp. 254–260, 1995.
[76]  G. Stores, P. L. Williams, E. Styles, and Z. Zaiwalla, “Psychological effects of sodium valproate and carbamazepine in epilepsy,” Archives of Disease in Childhood, vol. 67, no. 11, pp. 1330–1337, 1992.
[77]  R. D. Elterman, T. A. Glauser, E. Wyllie, R. Reife, S. C. Wu, and G. Pledger, “A double-blind randomized trial of topiramate as adjunctive therapy for partial-onset seizures in children,” Neurology, vol. 52, no. 7, pp. 1338–1344, 1999.
[78]  E. Wirrell, K. Farrell, and S. Whiting, “The epileptic encephalopathies of infancy and childhood,” Canadian Journal of Neurological Sciences, vol. 32, no. 4, pp. 409–418, 2005.
[79]  D. J. Manning and L. Rosenbloom, “Non-convulsive status epilepticus,” Archives of Disease in Childhood, vol. 62, no. 1, pp. 37–40, 1987.
[80]  T. Halonen, J. Nissinen, and A. Pitk?nen, “Effect of lamotrigine treatment on status epilepticus-induced neuronal damage and memory impairment in rat,” Epilepsy Research, vol. 46, no. 3, pp. 205–223, 2001.
[81]  A. F. Hoffmann, Q. Zhao, and G. L. Holmes, “Cognitive impairment following status epilepticus and recurrent seizures during early development: support for the ‘two-hit hypothesis’,” Epilepsy and Behavior, vol. 5, no. 6, pp. 873–877, 2004.
[82]  C. M. Verity, R. Greenwood, and J. Golding, “Long-term intellectual and behavioral outcomes of children with febrile convulsions,” New England Journal of Medicine, vol. 338, no. 24, pp. 1723–1728, 1998.
[83]  G. L. Holmes, “Effects of seizures on brain development: lessons from the laboratory,” Pediatric Neurology, vol. 33, no. 1, pp. 1–11, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133