全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Anatomy of the Temporal Lobe

DOI: 10.1155/2012/176157

Full-Text   Cite this paper   Add to My Lib

Abstract:

Only primates have temporal lobes, which are largest in man, accommodating 17% of the cerebral cortex and including areas with auditory, olfactory, vestibular, visual and linguistic functions. The hippocampal formation, on the medial side of the lobe, includes the parahippocampal gyrus, subiculum, hippocampus, dentate gyrus, and associated white matter, notably the fimbria, whose fibres continue into the fornix. The hippocampus is an inrolled gyrus that bulges into the temporal horn of the lateral ventricle. Association fibres connect all parts of the cerebral cortex with the parahippocampal gyrus and subiculum, which in turn project to the dentate gyrus. The largest efferent projection of the subiculum and hippocampus is through the fornix to the hypothalamus. The choroid fissure, alongside the fimbria, separates the temporal lobe from the optic tract, hypothalamus and midbrain. The amygdala comprises several nuclei on the medial aspect of the temporal lobe, mostly anterior the hippocampus and indenting the tip of the temporal horn. The amygdala receives input from the olfactory bulb and from association cortex for other modalities of sensation. Its major projections are to the septal area and prefrontal cortex, mediating emotional responses to sensory stimuli. The temporal lobe contains much subcortical white matter, with such named bundles as the anterior commissure, arcuate fasciculus, inferior longitudinal fasciculus and uncinate fasciculus, and Meyer’s loop of the geniculocalcarine tract. This article also reviews arterial supply, venous drainage, and anatomical relations of the temporal lobe to adjacent intracranial and tympanic structures. 1. Introduction In this paper, I attempt to explain the positions of the parts of the normal human temporal lobe in relation to one another and to nearby structures. Some physiological and pathological correlates are mentioned, but this is primarily an anatomical account. References are provided for further reading, especially in areas where there is clinical interest or controversy or where anatomical details are not easily found in ordinary textbooks of neuroanatomy. A few historical references are included to remind readers that many of the “discoveries” made with modern imaging techniques simply confirm what has been known about the temporal lobe for many years. No attempt is made to provide references for the original descriptions of gross anatomical structures, but synonyms are mentioned to accommodate the differences in terminology used by anatomists, pathologists, and radiologists in textbooks and

References

[1]  J. Z. Young, The Life of Vertebrates, Clarendon Press, Oxford, UK, 1950.
[2]  P. Pirlot, Morphologie Evolutive des Chordes, Presses de l'Universite de Montreal, Montreal, Canada, 1969.
[3]  H. B. Sarnat and M. B. Netsky, Evolution of the Nervous System, Oxford University Press, New York, NY, USA, 2nd edition, 1981.
[4]  J. G. Mai, G. Paxinos, and T. Voss, Atlas of the Human Brain, Elsevier, Amsterdam, The Netherlands, 3rd edition, 2008.
[5]  W. Penfield and T. Rasmussen, The Cerebral Cortex of Man. A Clinical Study of Localization of Function, Macmillan, New York, NY, USA, 1957.
[6]  M. Davis, “The role of the amygdala in fear and anxiety,” Annual Review of Neuroscience, vol. 15, pp. 353–375, 1992.
[7]  R. G. Heath, “Correlation of brain activity with emotion: a basis for developing treatment of violent-aggressive behavior,” Journal of the American Academy of Psychoanalysis, vol. 20, no. 3, pp. 335–346, 1992.
[8]  M. Jones-Gotman, R. J. Zatorre, F. Cendes et al., “Contribution of medial versus lateral temporal-lobe structures to human odour identification,” Brain, vol. 120, no. 10, pp. 1845–1856, 1997.
[9]  E. T. Rolls, “Memory systems in the brain,” Annual Review of Psychology, vol. 51, pp. 599–630, 2000.
[10]  K. Nader, “Memory traces unbound,” Trends in Neurosciences, vol. 26, no. 2, pp. 65–72, 2003.
[11]  C. J. Price, “The anatomy of language: a review of 100 fMRI studies published in 2009,” Annals of the New York Academy of Sciences, vol. 1191, pp. 62–88, 2010.
[12]  R. W. Baloh and K. A. Kerber, Neurophysiology of the Vestibular System, Oxford University Press, New York, NY, USA, 4th edition, 2011.
[13]  H. Kluver and P. C. Bucy, “‘Psychic blindness’ and other symptoms following bilateral temporal lobectomy in rhesus monkeys,” American Journal of Physiology, vol. 119, pp. 352–353, 1937.
[14]  H. Kluver and P. C. Bucy, “Preliminary analysis of functions of temporal lobes in monkeys,” Archives of Neurology and Psychiatry, vol. 42, pp. 979–1000, 1939.
[15]  R. Lilly, J. L. Cummings, F. Benson, and M. Frankel, “The human Kluver-Bucy syndrome,” Neurology, vol. 33, no. 9, pp. 1141–1145, 1983.
[16]  H. Ozawa, M. Sasaki, K. Sugai et al., “Single-photon emission CT and MR findings in Kluver-Bucy syndrome after Reye syndrome,” American Journal of Neuroradiology, vol. 18, no. 3, pp. 540–542, 1997.
[17]  S. Jha and R. Patel, “Kluver-Bucy syndrome—an experience with six cases,” Neurology India, vol. 52, no. 3, pp. 369–371, 2004.
[18]  A. Kertesz, Aphasia and Associated Disorders: Taxonomy, Localization and Recovery, Grune & Stratton, New York, NY, USA, 1979.
[19]  M. Catani, D. K. Jones, and D. H. Ffytche, “Perisylvian language networks of the human brain,” Annals of Neurology, vol. 57, no. 1, pp. 8–16, 2005.
[20]  J. J. Kulynych, K. Vladar, D. W. Jones, and D. R. Weinberger, “Gender differences in the normal lateralization of the supratemporal cortex: MRI surface-rendering morphometry of Heschl's gyrus and the planum temporale,” Cerebral Cortex, vol. 4, no. 2, pp. 107–118, 1994.
[21]  R. Insausti and D. G. Amaral, “Hippocampal formation,” in The Human Nervous System, G. Paxinos and J. K. Mai, Eds., pp. 871–914, Elsevier, Amsterdam, The Netherlands, 2nd edition, 2004.
[22]  P. Broca, “Sur la circonvolution limbique et la scissure limbique,” Bulletins de la Société D'anthropologie de Paris, vol. 12, no. 12, pp. 646–657, 1877.
[23]  R. O'Rahilly and F. Müller, “Significant features in the early prenatal development of the human brain,” Annals of Anatomy, vol. 190, no. 2, pp. 105–118, 2008.
[24]  R. J. Lemire, J. D. Loeser, R. W. Leech, and E. C. Alvord, Normal and Abnormal Development of the Human Nervous System, Harper & Row, Hagerstown, Md, USA, 1975.
[25]  E. L. Kier, J. H. Kim, R. K. Fulbright, and R. A. Bronen, “Embryology of the human fetal hippocampus: mr imaging, anatomy, and histology,” American Journal of Neuroradiology, vol. 18, no. 3, pp. 525–532, 1997.
[26]  R. Lorente de No, “Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system,” Journal of Psychologie and Neurologie, vol. 46, pp. 113–177, 1934.
[27]  G. A. Piersol, Ed., Human Anatomy Including Structure and Development and Practical Considerations, Lippincott, Philadelphia, Pa, USA, 8th edition, 1923.
[28]  P. L. Williams, Ed., Gray's Anatomy. The Anatomical Basis of Medicine and Surgery, Edinburgh etc: Churchill Livingstone, New York, NY, USA, 1995.
[29]  J. E. Bruni, Human Neuroanatomy: A Text, Brain Atlas and Laboratory Dissection Guide, Oxford University Press, New York, NY, USA, 3rd edition, 2009.
[30]  F. T. Lewis, “The significance of the term hippocampus,” The Journal of Comparative Neurology, vol. 35, pp. 213–230, 1923.
[31]  E. J. Field and R. J. Harrison, Anatomical Terms: Their Origin and Derivation, Heffer, Cambridge, UK, 3rd edition, 1968.
[32]  H. Duvernoy, The Human Hippocampus. Functional Anatomy, Vascularization and Serial Sections with MRI, Springer, Berlin, Germany, 3rd edition, 2005.
[33]  L. Edinger, The Anatomy of the Central Nervous System of Man and of Vertebrates in General, F.A. Davis, Philadelphia, Pa, USA, 5th edition, 1899, Edited by W. S. Hall assisted by P. L. Holland and E. P. Carlton.
[34]  F. Müller and R. O'Rahilly, “The amygdaloid complex and the medial and lateral ventricular eminences in staged human embryos,” Journal of Anatomy, vol. 208, no. 5, pp. 547–564, 2006.
[35]  G. L. Streeter, “The development of the nervous system,” in Manual of Human Embryology, F. Keibel and F. P. Mall, Eds., vol. 2, pp. 1–156, Lippincott, Philadelphia, Pa, USA, 1912.
[36]  W. Irwin, R. J. Davidson, M. J. Lowe, B. J. Mock, J. A. Sorenson, and P. A. Turski, “Human amygdala activation detected with echo-planar functional magnetic resonance imaging,” NeuroReport, vol. 7, no. 11, pp. 1765–1769, 1996.
[37]  J. S. de Olmos, “Amygdala,” in The Human Nervous System, G. Paxinos and J. K. Mai, Eds., pp. 739–868, Elsevier, Amsterdam, The Netherlands, 2nd edition, 2004.
[38]  E. C. Crosby, T. Humphrey, and E. W. Lauer, Correlative Anatomy of the Nervous System, Macmillan, New York, NY, USA, 1962.
[39]  L. J. Martin, R. E. Powers, T. L. Dellovade, and D. L. Price, “The bed nucleus-amygdala continuum in human and monkey,” Journal of Comparative Neurology, vol. 309, no. 4, pp. 445–485, 1991.
[40]  A. Parent, Carpenter's Human Neuroanatomy, Williams & Wilkins, Baltimore, Md, USA, 9th edition, 1996.
[41]  S. T. Carmichael, M. C. Clugnet, and J. L. Price, “Central olfactory connections in the macaque monkey,” Journal of Comparative Neurology, vol. 346, no. 3, pp. 403–434, 1994.
[42]  J. A. Kiernan, Barr's The Human Nervous System: An Anatomical Viewpoint, Lippincott-Raven, Philadelphia, Pa, USA, 9th edition, 2009.
[43]  P. Maquet, J. M. Peters, J. Aerts et al., “Functional neuroanatomy of human rapid-eye-movement sleep and dreaming,” Nature, vol. 383, no. 6596, pp. 163–166, 1996.
[44]  J. E. LeDoux, “Emotion circuits in the brain,” Annual Review of Neuroscience, vol. 23, pp. 155–184, 2000.
[45]  J. P. Aggleton, “The contribution of the amygdala to normal and abnormal emotional states,” Trends in Neurosciences, vol. 16, no. 8, pp. 328–333, 1993.
[46]  D. H. Zald, “The human amygdala and the emotional evaluation of sensory stimuli,” Brain Research Reviews, vol. 41, no. 1, pp. 88–123, 2003.
[47]  J. Bancaud, F. Brunet-Bourgin, P. Chauvel, and E. Halgren, “Anatomical origin of deja vu and vivid 'memories' in human temporal lobe epilepsy,” Brain, vol. 117, no. 1, pp. 71–90, 1994.
[48]  T. W. Buchanan, “Retrieval of emotional memories,” Psychological Bulletin, vol. 133, no. 5, pp. 761–779, 2007.
[49]  C. Ramponi, P. J. Barnard, F. Kherif, and R. N. Henson, “Voluntary explicit versus involuntary conceptual memory are associated with dissociable fMRI responses in hippocampus, amygdala, and parietal cortex for emotional and neutral word pairs,” Journal of Cognitive Neuroscience, vol. 23, pp. 1935–1951, 2011.
[50]  D. R. Bach, N. Weiskopf, and R. J. Dolan, “A stable sparse fear memory trace in human amygdala,” Journal of Neuroscience, vol. 31, no. 25, pp. 9383–9389, 2011.
[51]  D. N. Pandya and L. A. Vignolo, “Intra- and interhemispheric projections of the precentral, premotor and arcuate areas in the rhesus monkey,” Brain Research, vol. 26, no. 2, pp. 217–233, 1971.
[52]  K. Oishi, A. Faria, P. C. M. van Zijl, and S. Mori, MRI Atlas of Human White Matter, Elsevier, Amsterdam, The Netherlands, 2nd edition, 2011.
[53]  M. C. de Lacoste, J. B. Kirkpatrick, and E. D. Ross, “Topography of the human corpus callosum,” Journal of Neuropathology and Experimental Neurology, vol. 44, no. 6, pp. 578–591, 1985.
[54]  A. R. Damasio, “Medical progress: aphasia,” The New England Journal of Medicine, vol. 326, no. 8, pp. 531–539, 1992.
[55]  J. Klingler and P. Gloor, “The connections of the amygdala and of the anterior temporal cortex in the human brain,” The Journal of Comparative Neurology, vol. 115, pp. 333–369, 1960.
[56]  P. Brodal, “The corticopontine projection in the rhesus monkey. Origin and principles of organization,” Brain, vol. 101, no. 2, pp. 251–283, 1978.
[57]  G. K. Tutton, “Cerebral abscess—the present position,” Annals of the Royal College of Surgeons of England, vol. 13, no. 5, pp. 281–311, 1953.
[58]  L. Sennaroglu and B. Sozeri, “Otogenic brain abscess: review of 41 cases,” Otolaryngology, vol. 123, no. 6, pp. 751–755, 2000.
[59]  S. Sunderland and K. C. Bradley, “Disturbances of oculomotor function accompanying extradural haemorrhage,” Journal of Neurology, Neurosurgery, and Psychiatry, vol. 16, no. 1, pp. 35–46, 1953.
[60]  S. Sunderland and E. S. R. Hughes, “The pupillo-constrictor pathway and the nerves to the ocular muscles in man,” Brain, vol. 69, no. 4, pp. 301–309, 1946.
[61]  G. Salamon, Atlas de la Vascularization Arterielle du Cerveau chez l'Homme, Sandoz Editions, Paris, Farnce, 2nd edition, 1973.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133