全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Temporal Lobe Epilepsy after Refractory Status Epilepticus: An Illustrative Case and Review of the Literature

DOI: 10.1155/2012/209701

Full-Text   Cite this paper   Add to My Lib

Abstract:

New onset refractory status epilepticus (NORSE) is a relatively newly defined disease entity, where otherwise healthy individuals develop unrelenting seizures that do not respond to conventional anticonvulsant therapy and may require months of therapy with anesthetic drugs. We have described a case of NORSE who subsequently developed mesial temporal lobe sclerosis (MTS) and recurrent temporal lobe seizures. We discuss the possible pathophysiological mechanisms by which refractory seizures may contribute to the development of temporal lobe epilepsy (TLE). 1. Introduction Temporal lobe pathology is associated with critical illness via a variety of mechanisms. Cardiac arrhythmias and asystole are known to complicate temporal lobe seizures [1]. Severe infections of the nervous system, such as herpes simplex virus infection, can cause hemorrhagic destruction of the temporal lobe and subsequent cerebral edema and herniation. The temporal tips and mesial temporal lobe structures are also commonly affected in traumatic brain injury, often resulting in memory impairment, posttraumatic epilepsy, and other deficits [2–4]. The hippocampus is the most vulnerable structure in cases of hypoxic-ischemic insults, as with transient cardiac arrest, with profound memory deficit as a frequent outcome [5]. Perhaps one of the most common reasons that an intensivist (or neurointensivist) may come to care for patients with ultimate temporal lobe dysfunction is with seizures, particularly status epilepticus. Status epilepticus has often been associated with temporal lobe epilepsy as being a complication of, or a cause of, temporal lobe pathology. Although there have been many studies which have evaluated the clinical outcome of patients with status epilepticus (and refractory status epilepticus) in the intensive care setting [6–11], there is relatively little data regarding temporal lobe epilepsy as a sequela of prolonged seizure activity outside of febrile status epilepticus [10–13]. More importantly, the exact mechanisms relating an episode of status epilepticus with subsequent temporal lobe epilepsy remain largely unclear. In this report, we provide a case illustration of a previously well patient who subsequently developed multifocal epilepsy following new-onset refractory status epilepticus (NORSE) syndrome of unclear etiology [14]. The epilepsy syndrome was characterized by independent bilateral temporal lobe epilepsy (TLE), plus multifocal interictal epileptic spikes that were also maximal in the temporal regions. We use this case to illustrate that refractory status

References

[1]  D. Sorajja, M. D. Bhakta, J. F. Drazkowski, and G. T. Altemose, “Ictal asystole,” Heart Rhythm, vol. 8, no. 2, pp. 331–332, 2011.
[2]  N. R. Temkin, “Preventing and treating posttraumatic seizures: the human experience,” Epilepsia, vol. 50, no. 2, supplement, pp. 10–13, 2009.
[3]  S. Riggio and M. Wong, “Neurobehavioral sequelae of traumatic brain injury,” Mount Sinai Journal of Medicine, vol. 76, no. 2, pp. 163–172, 2009.
[4]  P. Azouvi, C. Vallat-Azouvi, and A. Belmont, “Cognitive deficits after traumatic coma,” Progress in Brain Research, vol. 177, no. C, pp. 89–110, 2009.
[5]  V. R. M. P. Moulaert, J. A. Verbunt, C. M. van Heugten, and D. T. Wade, “Cognitive impairments in survivors of out-of-hospital cardiac arrest: a systematic review,” Resuscitation, vol. 80, no. 3, pp. 297–305, 2009.
[6]  J. M. Oxbury and C. W. M. Whitty, “Causes and consequences of status epilepticus in adults: a study of 86 cases,” Brain, vol. 94, no. 4, pp. 733–744, 1971.
[7]  J. Aicardi and J. J. Chevrie, “Convulsive status epilepticus in infants and children. A study of 239 cases,” Epilepsia, vol. 11, no. 2, pp. 187–197, 1970.
[8]  G. D. Cascino, D. Hesdorffer, G. Logroscino, and W. A. Hauser, “Morbidity of nonfebrile status epilepticus in Rochester, Minnesota, 1965–1984,” Epilepsia, vol. 39, no. 8, pp. 829–832, 1998.
[9]  A. D. Cooper, J. W. Britton, and A. A. Rabinstein, “Functional and cognitive outcome in prolonged refractory status epilepticus,” Archives of Neurology, vol. 66, no. 12, pp. 1505–1509, 2009.
[10]  M. Holtkamp, J. Othman, K. Buchheim, and H. Meierkord, “Predictors and prognosis of refractory status epilepticus treated in a neurological intensive care unit,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 76, no. 4, pp. 534–539, 2005.
[11]  A. Neligan and S. D. Shorvon, “Prognostic factors, morbidity and mortality in tonic-clonic status epilepticus: a review,” Epilepsy Research, vol. 93, no. 1, pp. 1–10, 2011.
[12]  D. C. Hesdorffer, G. Logroscino, G. Cascino, J. F. Annegers, and W. A. Hauser, “Incidence of status epilepticus in Rochester, Minnesota, 1965–1984,” Neurology, vol. 50, no. 3, pp. 735–741, 1998.
[13]  D. C. Hesdorffer, G. Logroscino, G. Cascino, J. F. Annegers, and W. A. Hauser, “Risk of unprovoked seizure after acute symptomatic seizure: effect of status epilepticus,” Annals of Neurology, vol. 44, no. 6, pp. 908–912, 1998.
[14]  D. J. Costello, R. D. Kilbride, and A. J. Cole, “Cryptogenic new onset refractory status epilepticus (NORSE) in adults-Infectious or not?” Journal of the Neurological Sciences, vol. 277, no. 1-2, pp. 26–31, 2009.
[15]  S. T. Herman, “Epilepsy after brain insult: targeting epileptogenesis,” Neurology, vol. 59, no. 9, supplement, pp. S21–S26, 2002.
[16]  C. G. Bien, H. Urbach, J. Schramm et al., “Limbic encephalitis as a precipitating event in adult-onset temporal lobe epilepsy,” Neurology, vol. 69, no. 12, pp. 1236–1244, 2007.
[17]  U. C. Wieshmann, F. G. Woermann, L. Lemieux et al., “Development of hippocampal atrophy: a serial magnetic resonance imaging study in a patient who developed epilepsy after generalized status epilepticus,” Epilepsia, vol. 38, no. 11, pp. 1238–1241, 1997.
[18]  G. Gong, F. Shi, L. Concha, C. Beaulieu, and D. W. Gross, “Insights into the sequence of structural consequences of convulsive status epilepticus: a longitudinal MRI study,” Epilepsia, vol. 49, no. 11, pp. 1941–1945, 2008.
[19]  P. M. Vespa, D. L. McArthur, Y. Xu et al., “Nonconvulsive seizures after traumatic brain injury are associated with hippocampal atrophy,” Neurology, vol. 75, no. 9, pp. 792–798, 2010.
[20]  R. C. Scott, D. G. Gadian, M. D. King et al., “Magnetic resonance imaging findings within 5 days of status epilepticus in childhood,” Brain, vol. 125, no. 9, pp. 1951–1959, 2002.
[21]  R. C. Scott, M. D. King, D. G. Gadian, B. G. R. Neville, and A. Connelly, “Hippocampal abnormalities after prolonged febrile convulsion: a longitudinal MRI study,” Brain, vol. 126, no. 11, pp. 2551–2557, 2003.
[22]  J. M. Provenzale, D. P. Barboriak, K. VanLandingham, J. MacFall, D. Delong, and D. V. Lewis, “Hippocampal MRI signal hyperintensity after febrile status epilepticus is predictive of subsequent mesial temporal sclerosis,” American Journal of Roentgenology, vol. 190, no. 4, pp. 976–983, 2008.
[23]  F. Cendes, “Febrile seizures and mesial temporal sclerosis,” Current Opinion in Neurology, vol. 17, no. 2, pp. 161–164, 2004.
[24]  F. A. Scorza, R. M. Arida, M. G. Naffah-Mazzacoratti, D. A. Scerni, L. Calderazzo, and E. A. Cavalheiro, “The pilocarpine model of epilepsy: what have we learned?” Anais da Academia Brasileira de Ciencias, vol. 81, no. 3, pp. 345–365, 2009.
[25]  K. Standley, R. Abdulmassih, and S. Benbadis, “Good outcome is possible after months of refractory status epilepticus: lesson learned,” Epilepsia, vol. 53, no. 1, pp. e17–e20, 2012.
[26]  C. E. Stafstrom, R. D. Tien, T. J. Montine, and R. M. Boustany, “Refractory status epilepticus associated with progressive magnetic resonance imaging signal change and hippocampal neuronal loss,” Journal of Epilepsy, vol. 9, no. 4, pp. 253–258, 1996.
[27]  S. McClelland, C. M. Dubé, J. Yang, and T. Z. Baram, “Epileptogenesis after prolonged febrile seizures: mechanisms, biomarkers and therapeutic opportunities,” Neuroscience Letters, vol. 497, no. 3, pp. 155–162, 2011.
[28]  A. Vezzani, J. French, T. Bartfai, and T. Z. Baram, “The role of inflammation in epilepsy,” Nature Reviews Neurology, vol. 7, no. 1, pp. 31–40, 2011.
[29]  A. Friedman, “Blood-brain barrier dysfunction, status epilepticus, seizures, and epilepsy: a puzzle of a chicken and egg?” Epilepsia, vol. 52, no. 8, supplement, pp. 19–20, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413