全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Temporal Lobe Epilepsy in Children

DOI: 10.1155/2012/849540

Full-Text   Cite this paper   Add to My Lib

Abstract:

The temporal lobe is a common focus for epilepsy. Temporal lobe epilepsy in infants and children differs from the relatively homogeneous syndrome seen in adults in several important clinical and pathological ways. Seizure semiology varies by age, and the ictal EEG pattern may be less clear cut than what is seen in adults. Additionally, the occurrence of intractable seizures in the developing brain may impact neurocognitive function remote from the temporal area. While many children will respond favorably to medical therapy, those with focal imaging abnormalities including cortical dysplasia, hippocampal sclerosis, or low-grade tumors are likely to be intractable. Expedient workup and surgical intervention in these medically intractable cases are needed to maximize long-term developmental outcome. 1. Introduction The temporal lobe plays a vital role in epilepsy and is the most frequent lobe involved in focal onset seizures. Temporal lobe epilepsy in children and infants has clear clinical features which make it distinct from the fairly homogeneous syndrome seen in adults. Reported studies of temporal lobe epilepsy (TLE) in children are heavily biased towards those with medically intractable epilepsy, and few studies focus on cohorts who are newly diagnosed. This paper will address pediatric-specific aspects of TLE, including clinical semiology in young children, pediatric epilepsy syndromes involving the temporal lobe, medical and surgical management, associated psychiatric and cognitive disorders, and long-term outcomes. 2. Epidemiology The overall incidence of new-onset epilepsy in children ranges from 33 to 82 per 100,000 children per year, and approximately half- to two-thirds of these children have focal-onset seizures [1–6]. However, the exact incidence of TLE is not known, as the specific lobe of onset is not specified in most incidence studies. Compared to adults, focal seizures in children are more likely to arise from extratemporal foci. Simon Harvey et al. identified 63 children with new-onset TLE over a 4-year period in the state of Victoria, Australia (population 4.4 million) [7]. In our 30-year cohort of new-onset epilepsy in children, 276/468 (59%) had nonidiopathic focal epilepsy. Of these, 20 (7.2%) had a focal lesion on MRI in the temporal region (10: mesial temporal sclerosis, 1: malformation of cortical development, 2: ischemia/gliosis, 1: tumour, and 4: vascular malformation), while 17 (6.1%) had normal imaging and a single focus of epileptiform discharge in the temporal region. Therefore, it was determined that TLE was responsible

References

[1]  E. C. Wirrell, B. R. Grossardt, L. C. L. Wong-Kisiel, and K. C. Nickels, “Incidence and classification of new-onset epilepsy and epilepsy syndromes in children in Olmsted county, Minnesota from 1980 to 2004: a population-based study,” Epilepsy Research, vol. 95, no. 1-2, pp. 110–118, 2011.
[2]  C. S. Camfield, P. R. Camfield, K. Gordon, E. Wirrell, and J. M. Dooley, “Incidence of epilepsy in childhood and adolescence: a population-based study in Nova Scotia from 1977 to 1985,” Epilepsia, vol. 37, no. 1, pp. 19–23, 1996.
[3]  C. Adel?w, E. ?ndell, P. ?mark et al., “Newly diagnosed single unprovoked seizures and epilepsy in Stockholm, Sweden: first report from the Stockholm incidence registry of epilepsy (SIRE),” Epilepsia, vol. 50, no. 5, pp. 1094–1101, 2009.
[4]  S. Blom, J. Heijbel, and P. G. Bergfors, “Incidence of epilepsy in children: a follow-up study three years after the first seizure,” Epilepsia, vol. 19, no. 4, pp. 343–350, 1978.
[5]  J. Christensen, M. Vestergaard, M. G. Pedersen, C. B. Pedersen, J. Olsen, and P. Sidenius, “Incidence and prevalence of epilepsy in Denmark,” Epilepsy Research, vol. 76, no. 1, pp. 60–65, 2007.
[6]  H. Doose and B. Sitepu, “Childhood epilepsy in a German city,” Neuropediatrics, vol. 14, no. 4, pp. 220–224, 1983.
[7]  A. Simon Harvey, S. F. Berkovic, J. A. Wrennall, and L. J. Hopkins, “Temporal lobe epilepsy in childhood: clinical, EEG, and neuroimaging findings and syndrome classification in a cohort with new-onset seizures,” Neurology, vol. 49, no. 4, pp. 960–968, 1997.
[8]  G. D. Cascino, “Surgical treatment for epilepsy,” Epilepsy Research, vol. 60, pp. 179–186, 2004.
[9]  A. Ray and P. Kotagal, “Temporal lobe epilepsy in children: overview of clinical semiology,” Epileptic Disorders, vol. 7, no. 4, pp. 299–307, 2005.
[10]  A. Fogarasi, I. Tuxhorn, J. Janszky et al., “Age-dependent seizure semiology in temporal lobe epilepsy,” Epilepsia, vol. 48, no. 9, pp. 1697–1702, 2007.
[11]  A. Fogarasi, H. Jokeit, E. Faveret, J. Janszky, and I. Tuxhorn, “The effect of age on seizure semiology in childhood temporal lobe epilepsy,” Epilepsia, vol. 43, no. 6, pp. 638–643, 2002.
[12]  B. F. Bourgeois, “Temporal lobe epilepsy in infants and children,” Brain and Development, vol. 20, no. 3, pp. 135–141, 1998.
[13]  A. Brockhaus and C. E. Elger, “Complex partial seizures of temporal lobe origin in children of different age groups,” Epilepsia, vol. 36, no. 12, pp. 1173–1181, 1995.
[14]  V. C. Terra-Bustamante, L. M. Inuzuca, R. M. Fernandes et al., “Temporal lobe epilepsy surgery in children and adolescents: clinical characteristics and post-surgical outcome,” Seizure, vol. 14, no. 4, pp. 274–281, 2005.
[15]  C. Bocti, Y. Robitaille, P. Diadori et al., “The pathological basis of temporal lobe epilepsy in childhood,” Neurology, vol. 60, no. 2, pp. 191–195, 2003.
[16]  E. A. Cavalheiro, D. F. Silva, W. A. Turski, L. S. Calderazzo-Filho, Z. A. Bortolotto, and L. Turski, “The susceptibility of rats to pilocarpine-induced seizures is age-dependent,” Brain Research, vol. 465, no. 1-2, pp. 43–58, 1987.
[17]  E. Cherubini, M. R. de Feo, O. Mecarelli, and G. F. Ricci, “Behavioral and electrographic patterns induced by systemic administration of kainic acid in developing rats,” Brain Research, vol. 285, no. 1, pp. 69–77, 1983.
[18]  G. L. Holmes, “Epilepsy in the developing brain: lessons from the laboratory and clinic,” Epilepsia, vol. 38, no. 1, pp. 12–30, 1997.
[19]  S. L. Moshe, “The effects of age on the kindling phenomenon,” Developmental Psychobiology, vol. 14, no. 1, pp. 75–81, 1981.
[20]  Y. Kakisaka, K. Haginoya, M. Ishitobi et al., “Utility of subtraction ictal SPECT images in detecting focal leading activity and understanding the pathophysiology of spasms in patients with west syndrome,” Epilepsy Research, vol. 83, no. 2-3, pp. 177–183, 2009.
[21]  H. T. Chugani, D. A. Shewmon, R. Sankar, B. C. Chen, and M. E. Phelps, “Infantile spasms: II. Lenticular nuclei and brain stem activation on positron emission tomography,” Annals of Neurology, vol. 31, no. 2, pp. 212–219, 1992.
[22]  J. N. Acharya, E. Wyllie, H. O. Lüders, P. Kotagal, M. Lancman, and M. Coelho, “Seizure symptomatology in infants with localization-related epilepsy,” Neurology, vol. 48, no. 1, pp. 189–196, 1997.
[23]  A. Olbrich, L. Urak, G. Gr?ppel et al., “Semiology of temporal lobe epilepsy in children and adolescents value in lateralizing the seizure onset zone,” Epilepsy Research, vol. 48, no. 1-2, pp. 103–110, 2002.
[24]  E. Wyllie, M. Chee, M. L. Granstrom et al., “Temporal lobe epilepsy in early childhood,” Epilepsia, vol. 34, no. 5, pp. 859–868, 1993.
[25]  E. Fontana, F. Negrini, S. Francione et al., “Temporal lobe epilepsy in children: electroclinical study of 77 cases,” Epilepsia, vol. 47, supplement s5, pp. 26–30, 2006.
[26]  L. Oller-Daurella and L. F. Oller, “Partial epilepsy with seizures appearing in the first three years of life,” Epilepsia, vol. 30, no. 6, pp. 820–826, 1989.
[27]  V. Villanueva and J. M. Serratosa, “Temporal lobe epilepsy: clinical semiology and age at onset,” Epileptic Disorders, vol. 7, no. 2, pp. 83–90, 2005.
[28]  I. Tuxhorn, H. Holthausen, and H. Boenigk, Eds., Paediatric Epilepsy Syndromes and Their Surgical Treatment, John Libbey and Company Ltd, London, UK, 1997.
[29]  M. Feichtinger, E. Pauli, I. Sch?fer et al., “Ictal fear in temporal lobe epilepsy: surgical outcome and focal hippocampal changes revealed by proton magnetic resonance spectroscopy imaging,” Archives of Neurology, vol. 58, no. 5, pp. 771–777, 2001.
[30]  D. F. Clarke, H. Otsubo, S. K. Weiss et al., “The significance of ear plugging in localization-related epilepsy,” Epilepsia, vol. 44, no. 12, pp. 1562–1567, 2003.
[31]  M. Vendrame, M. Zarowski, A. V. Alexopoulos, E. Wyllie, S. V. Kothare, and T. Loddenkemper, “Localization of pediatric seizure semiology,” Clinical Neurophysiology, vol. 122, no. 10, pp. 1924–1928, 2011.
[32]  P. Kotagal, H. Luders, H. H. Morris et al., “Dystonic posturing in complex partial seizures of temporal lobe onset: a new lateralizing sign,” Neurology, vol. 39, no. 2, pp. 196–201, 1989.
[33]  M. A. Peppercorn and A. G. Herzog, “The spectrum of abdominal epilepsy in adults,” American Journal of Gastroenterology, vol. 84, no. 10, pp. 1294–1296, 1989.
[34]  B. D. Moseley, E. C. Wirrell, K. Nickels, J. N. Johnson, M. J. Ackerman, and J. Britton, “Electrocardiographic and oximetric changes during partial complex and generalized seizures,” Epilepsy Research, vol. 95, no. 3, pp. 237–245, 2011.
[35]  H. Mayer, F. Benninger, L. Urak, B. Plattner, J. Geldner, and M. Feucht, “EKG abnormalities in children and adolescents with symptomatic temporal lobe epilepsy,” Neurology, vol. 63, no. 2, pp. 324–328, 2004.
[36]  B. D. Moseley, K. Nickels, J. Britton, and E. Wirrell, “How common is ictal hypoxemia and bradycardia in children with partial complex and generalized convulsive seizures?” Epilepsia, vol. 51, no. 7, pp. 1219–1224, 2010.
[37]  K. Watanabe, K. Hara, S. Hakamada, et al., “Seizures with apnea in children,” Pediatrics, vol. 70, no. 1, pp. 87–90, 1982.
[38]  M. R. Sperling and J. Engel Jr, “Electroencephalographic recording from the temporal lobes: a comparison of ear, anterior temporal, and nasopharyngeal electrodes,” Annals of Neurology, vol. 17, no. 5, pp. 510–513, 1985.
[39]  L. F. Quesney, “Extracranial EEG evaluation,” in Surgical Treatment of the Epilepsies, J. Engel Jr, Ed., pp. 129–166, Raven Press, New York, NY, USA, 1987.
[40]  F. W. Sharbrough, “Commentary: extracranial EEG monitoring,” in Surgical Treatment of the Epilepsies, J. Engel Jr, Ed., pp. 167–171, Raven Press, New York, NY, USA, 1987.
[41]  F. W. Sharbrough, “Electrical fields and recording techniques,” in Current Practice of Clinical Electroencephalography, D. Daly and T. A. Pedley, Eds., pp. 29–49, Raven Press, New York, NY, USA, 1990.
[42]  B. F. Westmoreland, “The electroencephalogram in patients with epilepsy,” in Neurology Clinics, M. J. Aminoff, Ed., pp. 599–613, WB Saunders, Philadelphia, Pa, USA, 1985.
[43]  E. Wyllie, D. K. Lachhwani, A. Gupta et al., “Successful surgery for epilepsy due to early brain lesions despite generalized EEG findings,” Neurology, vol. 69, no. 4, pp. 389–397, 2007.
[44]  J. Gotman and M. G. Marciani, “Electroencephalographic spiking activity, drug levels, and seizure occurrence in epileptic patients,” Annals of Neurology, vol. 17, no. 6, pp. 597–603, 1985.
[45]  A. T. Berg, S. F. Berkovic, M. J. Brodie et al., “Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE commission on classification and terminology, 2005–2009,” Epilepsia, vol. 51, no. 4, pp. 676–685, 2010.
[46]  R. Michelucci, E. Pasini, and C. Nobile, “Lateral temporal lobe epilepsies: clinical and genetic features,” Epilepsia, vol. 50, supplement 5, pp. 52–54, 2009.
[47]  R. Ottman, M. R. Winawer, S. Kalachikov et al., “LGI1 mutations in autosomal dominant partial epilepsy with auditory features,” Neurology, vol. 62, no. 7, pp. 1120–1126, 2004.
[48]  F. Bisulli, P. Tinuper, P. Avoni et al., “Idiopathic partial epilepsy with auditory features (IPEAF): a clinical and genetic study of 53 sporadic cases,” Brain, vol. 127, no. 6, pp. 1343–1352, 2004.
[49]  D. E. Crompton, I. E. Scheffer, I. Taylor et al., “Familial mesial temporal lobe epilepsy: a benign epilepsy syndrome showing complex inheritance,” Brain, vol. 133, no. 11, pp. 3221–3231, 2010.
[50]  L. Maillard, J. P. Vignal, E. Raffo, and H. Vespignani, “Bitemporal form of partial reading epilepsy: further evidence for an idiopathic localization-related syndrome,” Epilepsia, vol. 51, no. 1, pp. 165–169, 2010.
[51]  G. M?ddel, T. Lineweaver, S. U. Schuele, J. Reinholz, and T. Loddenkemper, “Atypical language lateralization in epilepsy patients,” Epilepsia, vol. 50, no. 6, pp. 1505–1516, 2009.
[52]  M. E. Peltola, E. Liukkonen, M. L. Granstrom et al., “The effect of surgery in encephalopathy with electrical status epilepticus during sleep,” Epilepsia, vol. 52, no. 3, pp. 602–609, 2011.
[53]  K. Nickels and E. Wirrell, “Electrical status epilepticus in sleep,” Seminars in Pediatric Neurology, vol. 15, no. 2, pp. 50–60, 2008.
[54]  P. G. Rossi, A. Parmeggiani, A. Posar, M. C. Scaduto, S. Chiodo, and G. Vatti, “Landau-Kleffner syndrome (LKS): long-term follow-up and links with electrical status epilepticus during sleep (ESES),” Brain and Development, vol. 21, no. 2, pp. 90–98, 1999.
[55]  P. B. Jayakar and S. S. Seshia, “Electrical status epilepticus during slow-wave sleep: a review,” Journal of Clinical Neurophysiology, vol. 8, no. 3, pp. 299–311, 1991.
[56]  A. S. Galanopoulou, A. Bojko, F. Lado, and S. L. Moshé, “The spectrum of neuropsychiatric abnormalities associated with electrical status epilepticus in sleep,” Brain and Development, vol. 22, no. 5, pp. 279–295, 2000.
[57]  L. Nieuwenhuis and J. Nicolai, “The pathophysiological mechanisms of cognitive and behavioral disturbances in children with Landau-Kleffner syndrome or epilepsy with continuous spike-and-waves during slow-wave sleep,” Seizure, vol. 15, no. 4, pp. 249–258, 2006.
[58]  R. D. Sheth, “Electroencephalogram in developmental delay: specific electroclinical syndromes,” Seminars in Pediatric Neurology, vol. 5, no. 1, pp. 45–51, 1998.
[59]  R. F. Tuchman and I. Rapin, “Regression in pervasive developmental disorders: seizures and epileptiform electroencephalogram correlates,” Pediatrics, vol. 99, no. 4, pp. 560–566, 1997.
[60]  K. A. McVicar and S. Shinnar, “Landau-Kleffner syndrome, electrical status epilepticus in slow wave sleep, and language regression in children,” Mental Retardation and Developmental Disabilities Research Reviews, vol. 10, no. 2, pp. 144–149, 2004.
[61]  C. A. Tassinari, G. Rubboli, L. Volpi et al., “Encephalopathy with electrical status epilepticus during slow sleep or ESES syndrome including the acquired aphasia,” Clinical Neurophysiology, vol. 111, supplement 2, pp. S94–S102, 2000.
[62]  C. A. Tassinari, R. Michelucci, A. Forti et al., “The electrical status epilepticus syndrome,” Epilepsy Research Supplement, vol. 6, pp. 111–115, 1992.
[63]  E. R. Perez, “Syndromes of acquired epileptic aphasia and epilepsy with continuous spike-waves during sleep: models for prolonged cognitive impairment of epileptic origin,” Seminars in Pediatric Neurology, vol. 2, no. 4, pp. 269–277, 1995.
[64]  W. S. MacAllister and S. G. Schaffer, “Neuropsychological deficits in childhood epilepsy syndromes,” Neuropsychology Review, vol. 17, no. 4, pp. 427–444, 2007.
[65]  S. Debiais, L. Tuller, M. A. Barthez et al., “Epilepsy and language development: the continuous spike-waves during slow sleep syndrome,” Epilepsia, vol. 48, no. 6, pp. 1104–1110, 2007.
[66]  R. F. Tuchman, “Epilepsy, language, and behavior: clinical models in childhood,” Journal of Child Neurology, vol. 9, no. 1, pp. 95–102, 1994.
[67]  M. de Negri, “Electrical status epilepticus during sleep (ESES). Different clinical syndromes: towards a unifying view?” Brain and Development, vol. 19, no. 7, pp. 447–451, 1997.
[68]  C. A. Tassinnari, M. Bureau, C. Dravet, B. D. Bernardina, and J. Roger, “Epilepsy with continuous spikes and waves during slow sleep—otherwise described as ESES,” in Epileptic Syndromes in Infancy, Childhood and Adolescence, J. Roger, M. Bureau, C. Dravet, F. E. Dreifuss, A. Perret, and P. Wolf, Eds., pp. 245–256, John Libbey, London, UK, 1992.
[69]  A. Beaumanoir, “EEG data,” in Continuous Spikes and Waves During Slow Sleep, A. Beaumanoir, M. Bureau, T. Deonna, L. Mira, and C. A. Tassinari, Eds., pp. 217–223, John Libbey, London, UK, 1995.
[70]  M. C. Smith and T. J. Hoeppner, “Epileptic encephalopathy of late childhood: Landau-Kleffner syndrome and the syndrome of continuous spikes and waves during slow-wave sleep,” Journal of Clinical Neurophysiology, vol. 20, no. 6, pp. 462–472, 2003.
[71]  J. Roger, F. E. Dreifuss, M. Martinez-Lage et al., “Proposal for revised classification of epilepsies and epileptic syndromes. Commission on classification and terminology of the international league against epilepsy,” Epilepsia, vol. 30, no. 4, pp. 389–399, 1989.
[72]  L. J. Willmore and Y. Ueda, “Genetics of epilepsy,” Journal of Child Neurology, vol. 17, supplement 1, pp. S18–S27, 2002.
[73]  C. P. Panayiotopoulos, M. Michael, S. Sanders, T. Valeta, and M. Koutroumanidis, “Benign childhood focal epilepsies: assessment of established and newly recognized syndromes,” Brain, vol. 131, no. 9, pp. 2264–2286, 2008.
[74]  J. A. French, A. M. Kanner, J. Bautista et al., “Efficacy and tolerability of the new antiepileptic drugs II: treatment of refractory epilepsy: report of the therapeutics and technology assessment subcommittee and quality standards subcommittee of the American academy of neurology and the American epilepsy society,” Neurology, vol. 62, no. 8, pp. 1261–1273, 2004.
[75]  P. Kwan and M. J. Brodie, “Early identification of refractory epilepsy,” New England Journal of Medicine, vol. 342, no. 5, pp. 314–319, 2000.
[76]  R. Mohanraj and M. J. Brodie, “Diagnosing refractory epilepsy: response to sequential treatment schedules,” European journal of neurology, vol. 13, no. 3, pp. 277–282, 2006.
[77]  H. A. Carpay, W. F. Arts, A. T. Geerts et al., “Epilepsy in childhood: an audit of clinical practice,” Archives of Neurology, vol. 55, no. 5, pp. 668–673, 1998.
[78]  A. T. Berg, S. R. Levy, F. M. Testa, and R. d'Souza, “Remission of epilepsy after two drug failures in children: a prospective study,” Annals of Neurology, vol. 65, no. 5, pp. 510–519, 2009.
[79]  L. C. Elkis, B. F. D. Bourgeois, E. Wyllie, and P. Kotagal, “Efficacy of second antiepileptic drug after failure of one drug in children with partial epilepsy,” Epilepsia, vol. 34, supplement 6, 107 pages, 1993.
[80]  F. Semah, M. C. Picot, C. Adam et al., “Is the underlying cause of epilepsy a major prognostic factor for recurrence?” Neurology, vol. 51, no. 5, pp. 1256–1262, 1998.
[81]  D. J. Dlugos, “The early identification of candidates for epilepsy surgery,” Archives of Neurology, vol. 58, no. 10, pp. 1543–1546, 2001.
[82]  U. Gleissner, R. Sassen, J. Schramm, C. E. Elger, and C. Helmstaedter, “Greater functional recovery after temporal lobe epilepsy surgery in children,” Brain, vol. 128, no. 12, pp. 2822–2829, 2005.
[83]  D. B. Sinclair, K. E. Aronyk, T. J. Snyder et al., “Pediatric epilepsy surgery at the University of Alberta: 1988–2000,” Pediatric Neurology, vol. 29, no. 4, pp. 302–311, 2003.
[84]  M. L. Bell, S. Rao, E. L. So et al., “Epilepsy surgery outcomes in temporal lobe epilepsy with a normal MRI,” Epilepsia, vol. 50, no. 9, pp. 2053–2060, 2009.
[85]  J. X. Tao, M. Baldwin, S. Hawes-Ebersole, and J. S. Ebersole, “Cortical substrates of scalp EEG epileptiform discharges,” Journal of Clinical Neurophysiology, vol. 24, no. 2, pp. 96–100, 2007.
[86]  N. J. Azar, A. H. Lagrange, and B. W. Abou-Khalil, “Transitional sharp waves at ictal onset—a neocortical ictal pattern,” Clinical Neurophysiology, vol. 120, no. 4, pp. 665–672, 2009.
[87]  J. S. Ebersole and S. V. Pacia, “Localization of temporal lobe foci by ictal EEG patterns,” Epilepsia, vol. 37, no. 4, pp. 386–399, 1996.
[88]  J. X. Tao, X. J. Chen, M. Baldwin et al., “Interictal regional delta slowing is an EEG marker of epileptic network in temporal lobe epilepsy,” Epilepsia, vol. 52, no. 3, pp. 467–476, 2011.
[89]  A. M. McIntosh, R. M. Kalnins, L. A. Mitchell, G. C. Fabinyi, R. S. Briellmann, and S. F. Berkovic, “Temporal lobectomy: long-term seizure outcome, late recurrence and risks for seizure recurrence,” Brain, vol. 127, no. 9, pp. 2018–2030, 2004.
[90]  F. G. Woermann and C. Vollmar, “Clinical MRI in children and adults with focal epilepsy: a critical review,” Epilepsy and Behavior, vol. 15, no. 1, pp. 40–49, 2009.
[91]  A. Labate, A. Gambardella, U. Aguglia et al., “Temporal lobe abnormalities on brain MRI in healthy volunteers: a prospective case-control study,” Neurology, vol. 74, no. 7, pp. 553–557, 2010.
[92]  G. D. Cascino, “Clinical correlations with hippocampal atrophy,” Magnetic Resonance Imaging, vol. 13, no. 8, pp. 1133–1136, 1995.
[93]  T. J. O'Brien, E. L. So, B. P. Mullan et al., “Subtraction SPECT co-registered to MRI improves postictal SPECT localization of seizure loci,” Neurology, vol. 52, no. 1, pp. 137–146, 1999.
[94]  E. L. So, “Integration of EEG, MRI, and SPECT in localizing the seizure focus for epilepsy surgery,” Epilepsia, vol. 41, supplement 3, pp. S48–S54, 2000.
[95]  O. Willmann, R. Wennberg, T. May, F. G. Woermann, and B. Pohlmann-Eden, “The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy. A meta-analysis,” Seizure, vol. 16, no. 6, pp. 509–520, 2007.
[96]  K. Kaiboriboon, S. Nagarajan, M. Mantle, and H. E. Kirsch, “Interictal MEG/MSI in intractable mesial temporal lobe epilepsy: spike yield and characterization,” Clinical Neurophysiology, vol. 121, no. 3, pp. 325–331, 2010.
[97]  E. Pataraia, G. Lindinger, L. Deecke, D. Mayer, and C. Baumgartner, “Combined MEG/EEG analysis of the interictal spike complex in mesial temporal lobe epilepsy,” NeuroImage, vol. 24, no. 3, pp. 607–614, 2005.
[98]  J. J. Shih, M. P. Weisend, J. Lewine, J. Sanders, J. Dermon, and R. Lee, “Areas of interictal spiking are associated with metabolic dysfunction in MRI-negative temporal lobe epilepsy,” Epilepsia, vol. 45, no. 3, pp. 223–229, 2004.
[99]  J. J. Shih, M. P. Weisend, J. A. Sanders, and R. R. Lee, “Magnetoencephalographic and magnetic resonance spectroscopy evidence of regional functional abnormality in mesial temporal lobe epilepsy,” Brain Topography, vol. 23, no. 4, pp. 368–374, 2010.
[100]  W. Series, L. M. Li, Z. Caramanos, D. L. Arnold, and J. Gotman, “Relation of interictal spike frequency to 1H-MRSI-measured NAA/Cr,” Epilepsia, vol. 40, no. 12, pp. 1821–1827, 1999.
[101]  J. H. Cross, A. Connelly, G. D. Jackson, C. L. Johnson, B. G. Neville, and D. G. Gadian, “Proton magnetic resonance spectroscopy in children with temporal lobe epilepsy,” Annals of Neurology, vol. 39, no. 1, pp. 107–113, 1996.
[102]  D. G. Gadian, E. B. Isaacs, J. H. Cross et al., “Lateralization of brain function in childhood revealed by magnetic resonance spectroscopy,” Neurology, vol. 46, no. 4, pp. 974–977, 1996.
[103]  P. R. Camfield, R. Gates, and G. Ronen, “Comparison of cognitive ability, personality profile, and school success in epileptic children with pure right versus left temporal lobe EEG foci,” Annals of Neurology, vol. 15, no. 2, pp. 122–126, 1984.
[104]  C. Helmstaedter and C. E. Elger, “Chronic temporal lobe epilepsy: a neurodevelopmental or progressively dementing disease,” Brain, vol. 132, no. 10, pp. 2822–2830, 2009.
[105]  D. S. Kadis, E. N. Kerr, J. T. Rutka, O. C. Snead III, S. K. Weiss, and M. L. Smith, “Pathology type does not predict language lateralization in children with medically intractable epilepsy,” Epilepsia, vol. 50, no. 6, pp. 1498–1504, 2009.
[106]  G. P. Lee, M. Westerveld, L. B. Blackburn, Y. D. Park, and D. W. Loring, “Prediction of verbal memory decline after epilepsy surgery in children: effectiveness of Wada memory asymmetries,” Epilepsia, vol. 46, no. 1, pp. 97–103, 2005.
[107]  C. A. Szabo and E. Wyllie, “Intracarotid amobarbital testing for language and memory dominance in children,” Epilepsy Research, vol. 15, no. 3, pp. 239–246, 1993.
[108]  J. R. Binder, D. S. Sabsevitz, S. J. Swanson, T. A. Hammeke, M. Raghavan, and W. M. Mueller, “Use of preoperative functional MRI to predict verbal memory decline after temporal lobe epilepsy surgery,” Epilepsia, vol. 49, no. 8, pp. 1377–1394, 2008.
[109]  L. Frings, K. Wagner, U. Halsband, R. Schwarzwald, J. Zentner, and A. Schulze-Bonhage, “Lateralization of hippocampal activation differs between left and right temporal lobe epilepsy patients and correlates with postsurgical verbal learning decrement,” Epilepsy Research, vol. 78, no. 2-3, pp. 161–170, 2008.
[110]  A. Datta, D. B. Sinclair, M. Wheatley et al., “Selective amygdalohippocampectomy: surgical outcome in children versus adults,” Canadian Journal of Neurological Sciences, vol. 36, no. 2, pp. 187–191, 2009.
[111]  H. Clusmann, T. Kral, U. Gleissner et al., “Analysis of different types of resection for pediatric patients with temporal lobe epilepsy,” Neurosurgery, vol. 54, no. 4, pp. 847–860, 2004.
[112]  T. H. Schwartz, C. W. Bazil, T. S. Walczak, S. Chan, T. A. Pedley, and R. R. Goodman, “The predictive value of intraoperative electrocorticography in resections for limbic epilepsy associated with mesial temporal sclerosis,” Neurosurgery, vol. 40, no. 2, pp. 302–311, 1997.
[113]  G. M. Mckhann II, J. Schoenfeld-McNeill, D. E. Born, M. M. Haglund, and G. A. Ojemann, “Intraoperative hippocampal electrocorticography to predict the extent of hippocampal resection in temporal lobe epilepsy surgery,” Journal of Neurosurgery, vol. 93, no. 1, pp. 44–52, 2000.
[114]  A. Kuruvilla and R. Flink, “Intraoperative electrocorticography in epilepsy surgery: useful or not?” Seizure, vol. 12, no. 8, pp. 577–584, 2003.
[115]  M. Lassonde, H. C. Sauerwein, I. Jambaque, M. L. Smith, and C. Helmstaedter, “Neuropsychology of childhood epilepsy: pre- and postsurgical assessment,” Epileptic Disorders, vol. 2, no. 1, pp. 3–13, 2000.
[116]  D. Yam, D. Nicolle, D. A. Steven, D. Lee, T. Hess, and J. G. Burneo, “Visual field deficits following anterior temporal lobectomy: long-term follow-up and prognostic implications,” Epilepsia, vol. 51, no. 6, pp. 1018–1023, 2010.
[117]  E. Ramos, S. Benbadis, and F. L. Vale, “Failure of temporal lobe resection for epilepsy in patients with mesial temporal sclerosis: results and treatment options,” Journal of Neurosurgery, vol. 110, no. 6, pp. 1127–1134, 2009.
[118]  E. F. Chang, M. Quigg, M. C. Oh et al., “Predictors of efficacy after stereotactic radiosurgery for medial temporal lobe epilepsy,” Neurology, vol. 74, no. 2, pp. 165–172, 2010.
[119]  F. Bartolomei, M. Hayashi, M. Tamura et al., “Long-term efficacy of γ knife radiosurgery in mesial temporal lobe epilepsy,” Neurology, vol. 70, no. 19, pp. 1658–1663, 2008.
[120]  A. L. Velasco, F. Velasco, M. Velasco, F. Jimenez, J. D. Carrillo-Ruiz, and G. Castro, “The role of neuromodulation of the hippocampus in the treatment of intractable complex partial seizures of the temporal lobe,” Acta Neurochirurgica, Supplementum, no. 97, 2, pp. 329–332, 2007.
[121]  A. L. Velasco, F. Velasco, M. Velasco, D. Trejo, G. Castro, and J. D. Carrillo-Ruiz, “Electrical stimulation of the hippocampal epileptic foci for seizure control: a double-blind, long-term follow-up study,” Epilepsia, vol. 48, no. 10, pp. 1895–1903, 2007.
[122]  R. Fisher, V. Salanova, T. Witt et al., “Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy,” Epilepsia, vol. 51, no. 5, pp. 899–908, 2010.
[123]  P. R. Gigante and R. R. Goodman, “Alternative surgical approaches in epilepsy,” Current Neurology and Neuroscience Reports, vol. 11, no. 4, pp. 404–408, 2011.
[124]  Y. J. Lee, H. C. Kang, S. J. Bae et al., “Comparison of temporal lobectomies of children and adults with intractable temporal lobe epilepsy,” Child's Nervous System, vol. 26, no. 2, pp. 177–183, 2010.
[125]  A. Mohamed, E. Wyllie, P. Ruggieri et al., “Temporal lobe epilepsy due to hippocampal sclerosis in pediatric candidates for epilepsy surgery,” Neurology, vol. 56, no. 12, pp. 1643–1649, 2001.
[126]  D. B. Sinclair, M. Wheatley, K. Aronyk et al., “Pathology and neuroimaging in pediatric temporal lobectomy for intractable epilepsy,” Pediatric Neurosurgery, vol. 35, no. 5, pp. 239–246, 2001.
[127]  O. Vernet, J. P. Farmer, J. L. Montes, J. G. Villemure, and K. Meagher-Villemure, “Dysgenetic mesial temporal sclerosis: an unrecognized entity,” Child's Nervous System, vol. 16, no. 10-11, pp. 719–723, 2000.
[128]  P. Barsi, J. Kenéz, D. Solymosi et al., “Hippocampal malrotation with normal corpus callosum: a new entity?” Neuroradiology, vol. 42, no. 5, pp. 339–345, 2000.
[129]  D. V. Lewis, S. Chan, and J. A. Bello, “HIMAL is a malformation that predisposes to prolonged febrile seizures: data from the FEBSTAT study,” Epilepsia, vol. 47, supplement 4, 16 pages, 2006.
[130]  R. P. Gamss, S. E. Slasky, J. A. Bello, T. S. Miller, and S. Shinnar, “Prevalence of hippocampal malrotation in a population without seizures,” American Journal of Neuroradiology, vol. 30, no. 8, pp. 1571–1573, 2009.
[131]  E. C. Wirrell, B. R. Grossardt, E. L. So, and K. C. Nickels, “A population-based study of long-term outcomes of cryptogenic focal epilepsy in childhood: cryptogenic epilepsy is probably not symptomatic epilepsy,” Epilepsia, vol. 52, no. 4, pp. 738–745, 2011.
[132]  S. Spencer and L. Huh, “Outcomes of epilepsy surgery in adults and children,” The Lancet Neurology, vol. 7, no. 6, pp. 525–537, 2008.
[133]  R. G. Jarrar, J. R. Buchhalter, F. B. Meyer, F. W. Sharbrough, and E. Laws, “Long-term follow-up of temporal lobectomy in children,” Neurology, vol. 59, no. 10, pp. 1635–1637, 2002.
[134]  M. Benifla, J. T. Rutka, H. Otsubo et al., “Long-term seizure and social outcomes following temporal lobe surgery for intractable epilepsy during childhood,” Epilepsy Research, vol. 82, no. 2-3, pp. 133–138, 2008.
[135]  B. P. Hermann, M. Seidenberg, B. Bell, et al., “The neurodevelopmental impact of childhood onset temporal lobe epilepsy on brain structure and function,” Epilepsia, vol. 43, pp. 1062–1071, 2002.
[136]  E. M. Sherman, S. Wiebe, T. B. Fay-Mcclymont et al., “Neuropsychological outcomes after epilepsy surgery: systematic review and pooled estimates,” Epilepsia, vol. 52, no. 5, pp. 857–869, 2011.
[137]  U. Gleissner, R. Sassen, M. Lendt, H. Clusmann, C. E. Elger, and C. Helmstaedter, “Pre- and postoperative verbal memory in pediatric patients with temporal lobe epilepsy,” Epilepsy Research, vol. 51, no. 3, pp. 287–296, 2002.
[138]  M. Westerveld, K. J. Sass, G. J. Chelune et al., “Temporal lobectomy in children: cognitive outcome,” Journal of Neurosurgery, vol. 92, no. 1, pp. 24–30, 2000.
[139]  C. Miranda and M. L. Smith, “Predictors of intelligence after temporal lobectomy in children with epilepsy,” Epilepsy and Behavior, vol. 2, no. 1, pp. 13–19, 2001.
[140]  C. Akos Szabó, E. Wyllie, L. D. Stanford et al., “Neuropsychological effect of temporal lobe resection in preadolescent children with epilepsy,” Epilepsia, vol. 39, no. 8, pp. 814–819, 1998.
[141]  C. Skirrow, J. H. Cross, F. Cormack, W. Harkness, F. Vargha-Khadem, and T. Baldeweg, “Long-term intellectual outcome after temporal lobe surgery in childhood,” Neurology, vol. 76, no. 15, pp. 1330–1337, 2011.
[142]  M. Rutter, P. Graham, and W. Yule, A Neuropsychiatric Study in Childhood, MacKeith Press, London, UK, 1970.
[143]  P. Hoare, “The development of psychiatric disorder among schoolchildren with epilepsy,” Developmental Medicine and Child Neurology, vol. 26, no. 1, pp. 3–13, 1984.
[144]  S. Davies, I. Heyman, and R. Goodman, “A population survey of mental health problems in children with epilepsy,” Developmental Medicine and Child Neurology, vol. 45, no. 5, pp. 292–295, 2003.
[145]  D. Ott, R. Caplan, D. Guthrie et al., “Measures of psychopathology in children with complex partial seizures and primary generalized epilepsy with absence,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 40, no. 8, pp. 907–914, 2001.
[146]  A. McLellan, S. Davies, I. Heyman et al., “Psychopathology in children with epilepsy before and after temporal lobe resection,” Developmental Medicine and Child Neurology, vol. 47, no. 10, pp. 666–672, 2005.
[147]  F. Cendes, P. C. Ragazzo, V. da Costa, and L. F. Martins, “Corpus callostomy in treatment of medically resistant epilepsy: preliminary results in a pediatric population,” Epilepsia, vol. 34, no. 5, pp. 910–917, 1993.
[148]  M. Lendt, C. Helmstaedter, S. Kuczaty, J. Schramm, and C. E. Elger, “Behavioural disorders in children with epilepsy: early improvement after surgery,” Journal of Neurology Neurosurgery and Psychiatry, vol. 69, no. 6, pp. 739–744, 2000.
[149]  E. M. Mizrahi, P. Kellaway, R. G. Grossman et al., “Anterior temporal lobectomy and medically refractory temporal lobe epilepsy of chilchood,” Epilepsia, vol. 31, no. 3, pp. 302–312, 1990.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133