全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Progress in Therapy Development for Amyotrophic Lateral Sclerosis

DOI: 10.1155/2012/187234

Full-Text   Cite this paper   Add to My Lib

Abstract:

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that cannot be slowed substantially using any currently-available clinical tools. Through decades of studying sporadic and familial ALS (SALS and FALS), researchers are coming to understand ALS as a complex syndrome with diverse genetic and environmental etiologies. It is know appreciated that motor neuron degeneration in ALS requires active (gain of function) and passive (loss of function) events to occur in non-neuronal cells, especially astrocytes and microglia. These neuroinflammatory processes produce paracrine factors that detrimentally affect motor neurons, precipitating protein aggregation and compromising cytoskeletal integrity. The result is a loss of neuronal homeostasis and progressive die-back of motor axons culminating in death of the afflicted motor neurons. This review will discuss experimental therapeutics that have been tested in murine ALS models, with an emphasis on those that have progressed to human clinical trials. Reasons will be considered for the frequent failure of preclinical successes to translate into positive clinical outcomes. Finally, this review will explore current trends in experimental therapeutics for ALS with emphasis on the emerging interest in axon guidance signaling pathways as novel targets for pharmacological support of neural cytoskeletal structure and function in order to slow ALS. 1. Introduction Amyotrophic lateral sclerosis (ALS; colloquially referred to as Lou Gehrig’s disease in American English and Motor Neurone Disease in British English) is one member of a family of anterior (ventral) horn diseases that cause progressive, irreversible degeneration and ultimately death of spinal motor neurons and their cortical efferents [1]. Other anterior horn diseases include Charcot-Marie-Tooth disease, spinal muscular atrophy, progressive motor atrophy (PMA), poliomyelitis, and West Nile virus. ALS is anatomically distinguished from other anterior horn diseases and motor neuropathologies by involvement of both upper and lower motor tracts with a relative sparing of sensory neural degeneration, though sensory involvement is present in a subset of ALS patients. ALS is also distinguished from other motor neuron diseases by its frustrating lack of definable genetic causes and generally enigmatic etiology. Approximately, one fifth of ALS cases are hereditary, but even within this subset there are currently thirteen confirmed Mendelian mutations encoding proteins in disparate pathways that appear at first glance to be minimally

References

[1]  A. Bento-Abreu, P. Van Damme, L. Van Den Bosch, and W. Robberecht, “The neurobiology of amyotrophic lateral sclerosis,” European Journal of Neuroscience, vol. 31, no. 12, pp. 2247–2265, 2010.
[2]  C. M. Lill and L. Bertram, “Towards unveiling the genetics of neurodegenerative diseases,” Seminars in Neurology, vol. 31, no. 5, pp. 531–541, 2011.
[3]  C. M. Lill, O. Abel, L. Bertram, and A. Al-Chalabi, “Keeping up with genetic discoveries in amyotrophic lateral sclerosis: the ALSoD and ALSGene databases,” Amyotrophic Lateral Sclerosis, vol. 12, no. 4, pp. 238–249, 2011.
[4]  D. Lambrechts, K. Poesen, R. Fernández-Santiago et al., “Meta-analysis of vascular endothelial growth factor variations in amyotrophic lateral sclerosis: increased susceptibility in male carriers of the -2578AA genotype,” Journal of Medical Genetics, vol. 46, no. 12, pp. 840–846, 2009.
[5]  H. Laaksovirta, T. Peuralinna, J. C. Schymick et al., “Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study,” The Lancet Neurology, vol. 9, no. 10, pp. 978–985, 2010.
[6]  A. Shatunov, K. Mok, S. Newhouse et al., “Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study,” The Lancet Neurology, vol. 9, no. 10, pp. 986–994, 2010.
[7]  H. M. Blauw, A. Al-Chalabi, P. M. Andersen et al., “A large genome scan for rare CNVs in amyotrophic lateral sclerosis,” Human Molecular Genetics, vol. 19, no. 20, pp. 4091–4099, 2010.
[8]  M. E. Gurney, F. B. Cutting, P. Zhai et al., “Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis,” Annals of Neurology, vol. 39, no. 2, pp. 147–157, 1996.
[9]  M. E. Gurney, T. J. Fleck, C. S. Himes, and E. D. Hall, “Riluzole preserves motor function in a transgenic model of familial amyotrophic lateral sclerosis,” Neurology, vol. 50, no. 1, pp. 62–66, 1998.
[10]  K. Hensley, M. Mhatre, S. Mou et al., “On the relation of oxidative stress to neuroinflammation: lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis,” Antioxidants and Redox Signaling, vol. 8, no. 11-12, pp. 2075–2087, 2006.
[11]  S. Scott, J. E. Kranz, J. Cole et al., “Design, power, and interpretation of studies in the standard murine model of ALS,” Amyotrophic Lateral Sclerosis, vol. 9, no. 1, pp. 4–15, 2008.
[12]  J. D. Rothstein, L. J. Martin, and R. W. Kuncl, “Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis,” The New England Journal of Medicine, vol. 326, no. 22, pp. 1464–1468, 1992.
[13]  L. I. Bruijn, M. W. Becher, M. K. Lee et al., “ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions,” Neuron, vol. 18, no. 2, pp. 327–338, 1997.
[14]  G. Bensimon, L. Lacomblez, and V. Meininger, “A controlled trial of riluzole in amyotrophic lateral sclerosis,” The New England Journal of Medicine, vol. 330, no. 9, pp. 585–591, 1994.
[15]  R. G. Miller, J. D. Mitchell, M. Lyon, and D. H. Moore, “Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND),” Cochrane Database of Systematic Reviews, no. 1, Article ID CD001447, 2007.
[16]  R. G. Miller, D. Moore, L. A. Young et al., “Placebo-controlled trial of gabapentin in patients with amyotrophic lateral sclerosis,” Neurology, vol. 47, no. 6, pp. 1383–1388, 1996.
[17]  C. Desnuelle, M. Dib, C. Garrel, and A. Favier, “A double-blind, placeho-controlled randomized clinical trial of α-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis,” Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, vol. 2, no. 1, pp. 9–18, 2001.
[18]  M. De Carvalho, S. Pinto, J. Costa, T. Evangelista, B. Ohana, and A. Pinto, “A randomized, placebo-controlled trial of memantine for functional disability in amyotrophic lateral sclerosis,” Amyotrophic Lateral Sclerosis, vol. 11, no. 5, pp. 456–460, 2010.
[19]  A. Ascherio, M. G. Weisskopf, E. J. O'Reilly et al., “Vitamin E intake and risk of amyotrophic lateral sclerosis,” Annals of Neurology, vol. 57, no. 1, pp. 104–110, 2005.
[20]  Y. Izumi, H. Sawada, N. Yamamoto et al., “Novel neuroprotective mechanisms of pramipexole, an anti-Parkinson drug, against endogenous dopamine-mediated excitotoxicity,” European Journal of Pharmacology, vol. 557, no. 2-3, pp. 132–140, 2007.
[21]  M. Cudkowicz, M. E. Bozik, E. W. Ingersoll et al., “The effects of dexpramipexole (KNS-760704) in individuals with amyotrophic lateral sclerosis,” Nature Medicine, vol. 17, no. 12, pp. 1652–1656, 2011.
[22]  A. Pramatarova, J. Laganière, J. Roussel, K. Brisebois, and G. A. Rouleau, “Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment,” Journal of Neuroscience, vol. 21, no. 10, pp. 3369–3374, 2001.
[23]  A. M. Clement, M. D. Nguyen, E. A. Roberts et al., “Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice,” Science, vol. 302, no. 5642, pp. 113–117, 2003.
[24]  S. H. Appel, R. G. Smith, J. I. Engelhardt, and E. Stefani, “Evidence for autoimmunity in amyotrophic lateral sclerosis,” Journal of the Neurological Sciences, vol. 118, no. 2, pp. 169–174, 1993.
[25]  J. S. Henkel, D. R. Beers, W. Zhao, and S. H. Appel, “Microglia in ALS: the good, the bad, and the resting,” Journal of Neuroimmune Pharmacology, vol. 4, no. 4, pp. 389–398, 2009.
[26]  E. D. Hall, J. A. Oostveen, and M. E. Gurney, “Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS,” Glia, vol. 23, no. 3, pp. 249–256, 1998.
[27]  M. Rentzos, A. Rombos, C. Nikolaou et al., “Interleukin-15 and Interleukin-12 are elevated in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis,” European Neurology, vol. 63, no. 5, pp. 285–290, 2010.
[28]  J. Kuhle, R. L. P. Lindberg, A. Regeniter et al., “Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis,” European Journal of Neurology, vol. 16, no. 6, pp. 771–774, 2009.
[29]  R. M. Mitchell, W. M. Freeman, W. T. Randazzo et al., “A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis,” Neurology, vol. 72, no. 1, pp. 14–19, 2009.
[30]  C. Cereda, C. Baiocchi, P. Bongioanni et al., “TNF and sTNFR1/2 plasma levels in ALS patients,” Journal of Neuroimmunology, vol. 194, no. 1-2, pp. 123–131, 2008.
[31]  M. Poloni, D. Facchetti, R. Mai et al., “Circulating levels of tumour necrosis factor-α and its soluble receptors are increased in the blood of patients with amyotrophic lateral sclerosis,” Neuroscience Letters, vol. 287, no. 3, pp. 211–214, 2000.
[32]  K. Hensley, J. Fedynyshyn, S. Ferrell et al., “Message and protein-level elevation of tumor necrosis factor α (TNFα) and TNFα-modulating cytokines in spinal cords of the G93A-SOD1 mouse model for amyotrophic lateral sclerosis,” Neurobiology of Disease, vol. 14, no. 1, pp. 74–80, 2003.
[33]  K. Hensley, R. A. Floyd, B. Gordon et al., “Temporal patterns of cytokine and apoptosis-related gene expression in spinal cords of the G93A-SOD1 mouse model of amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 82, no. 2, pp. 365–374, 2002.
[34]  T. Yoshihara, S. Ishigaki, M. Yamamoto et al., “Differential expression of inflammation- and apoptosis-related genes in spinal cords of a mutant SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 80, no. 1, pp. 158–167, 2002.
[35]  K. Hensley, H. Abdel-Moaty, J. Hunter et al., “Primary glia expressing the G93A-SOD1 mutation present a neuroinflammatory phenotype and provide a cellular system for studies of glial inflammation,” Journal of Neuroinflammation, vol. 3, article 2, 2006.
[36]  P. Weydt, E. C. Yuen, B. R. Ransom, and T. M?ller, “Increased cytotoxic potential of microglia from ALS-transgenic mice,” Glia, vol. 48, no. 2, pp. 179–182, 2004.
[37]  M. Kiaei, S. Petri, K. Kipiani et al., “Thalidomide and lenalidomide extend survival in a transgenic mouse model of amyotrophic lateral sclerosis,” Journal of Neuroscience, vol. 26, no. 9, pp. 2467–2473, 2006.
[38]  A. Neymotin, S. Petri, N. Y. Calingasan et al., “Lenalidomide (Revlimid?) administration at symptom onset is neuroprotective in a mouse model of amyotrophic lateral sclerosis,” Experimental Neurology, vol. 220, no. 1, pp. 191–197, 2009.
[39]  E. W. Stommel, J. A. Cohen, C. E. Fadul et al., “Efficacy of thalidomide for the treatment of amyotrophic lateral sclerosis: a phase II open label clinical trial,” Amyotrophic Lateral Sclerosis, vol. 10, no. 5-6, pp. 393–404, 2009.
[40]  T. Meyer, A. Maier, N. Borisow et al., “Thalidomide causes sinus bradycardia in ALS,” Journal of Neurology, vol. 255, no. 4, pp. 587–591, 2008.
[41]  M. West, M. Mhatre, A. Ceballos et al., “The arachidonic acid 5-lipoxygenase inhibitor nordihydroguaiaretic acid inhibits tumor necrosis factor α activation of microglia and extends survival of G93A-SOD1 transgenic mice,” Journal of Neurochemistry, vol. 91, no. 1, pp. 133–143, 2004.
[42]  S. Zhu, I. G. Stavrovskaya, M. Drozda et al., “Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice,” Nature, vol. 417, no. 6884, pp. 74–78, 2002.
[43]  D. B. Drachman, K. Frank, M. Dykes-Hoberg et al., “Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS,” Annals of Neurology, vol. 52, no. 6, pp. 771–778, 2002.
[44]  M. E. Cudkowicz, J. M. Shefner, D. A. Schoenfeld et al., “Trial of celecoxib in amyotrophic lateral sclerosis,” Annals of Neurology, vol. 60, no. 1, pp. 22–31, 2006.
[45]  P. H. Gordon, D. H. Moore, R. G. Miller et al., “Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial,” The Lancet Neurology, vol. 6, no. 12, pp. 1045–1053, 2007.
[46]  G. Gowing, F. Dequen, G. Soucy, and J. P. Julien, “Absence of tumor necrosis factor-α does not affect motor neuron disease caused by superoxide dismutase 1 mutations,” Journal of Neuroscience, vol. 26, no. 44, pp. 11397–11402, 2006.
[47]  A. Caminero, M. Comabella, and X. Montalban, “Tumor necrosis factor alpha (TNF-α), anti-TNF-α and demyelination revisited: an ongoing story,” Journal of Neuroimmunology, vol. 234, no. 1-2, pp. 1–6, 2011.
[48]  S. Arteaga, A. Andrade-Cetto, and R. Cárdenas, “Larrea tridentata (Creosote bush), an abundant plant of Mexican and US-American deserts and its metabolite nordihydroguaiaretic acid,” Journal of Ethnopharmacology, vol. 98, no. 3, pp. 231–239, 2005.
[49]  W. Boston-Howes, E. O. Williams, A. Bogush, M. Scolere, P. Pasinelli, and D. Trotti, “Nordihydroguaiaretic acid increases glutamate uptake in vitro and in vivo: therapeutic implications for amyotrophic lateral sclerosis,” Experimental Neurology, vol. 213, no. 1, pp. 229–237, 2008.
[50]  L. R. Fischer, D. G. Culver, P. Tennant et al., “Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man,” Experimental Neurology, vol. 185, no. 2, pp. 232–240, 2004.
[51]  L. R. Fischer and J. D. Glass, “Axonal degeneration in motor neuron disease,” Neurodegenerative Diseases, vol. 4, no. 6, pp. 431–442, 2007.
[52]  E. R. E. Schmidt, R. J. Pasterkamp, and L. H. van den Berg, “Axon guidance proteins: novel therapeutic targets for ALS?” Progress in Neurobiology, vol. 88, no. 4, pp. 286–301, 2009.
[53]  F. D. Winter, T. Vo, F. J. Stam et al., “The expression of the chemorepellent Semaphorin 3A is selectively induced in terminal Schwann cells of a subset of neuromuscular synapses that display limited anatomical plasticity and enhanced vulnerability in motor neuron disease,” Molecular and Cellular Neuroscience, vol. 32, no. 1-2, pp. 102–117, 2006.
[54]  K. Hensley, K. Venkova, A. Christov, W. Gunning, and J. Park, “Collapsin response mediator protein-2: an emerging pathologic feature and therapeutic target for neurodisease indications,” Molecular Neurobiology, vol. 43, no. 3, pp. 180–191, 2011.
[55]  L. Duplan, N. Bernard, W. Casseron et al., “Collapsin response mediator protein 4a (CRMP4a) is upregulated in motoneurons of mutant SOD1 mice and can trigger motoneuron axonal degeneration and cell death,” Journal of Neuroscience, vol. 30, no. 2, pp. 785–796, 2010.
[56]  K. Hensley, A. Christov, S. Kamat et al., “Proteomic identification of binding partners for the brain metabolite Lanthionine Ketimine (LK) and documentation of LK effects on microglia and motoneuron cell cultures,” Journal of Neuroscience, vol. 30, no. 8, pp. 2979–2988, 2010.
[57]  K. Hensley, K. Venkova, and A. Christov, “Emerging biological importance of central nervous system lanthionines,” Molecules, vol. 15, no. 8, pp. 5581–5594, 2010.
[58]  P. Fanara, J. Banerjee, R. V. Hueck et al., “Stabilization of hyperdynamic microtubules is neuroprotective in amyotrophic lateral sclerosis,” The Journal of Biological Chemistry, vol. 282, no. 32, pp. 23465–23472, 2007.
[59]  H. F. Poon, K. Hensley, V. Thongboonkerd et al., “Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosis,” Free Radical Biology and Medicine, vol. 39, no. 4, pp. 453–462, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413