全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青藏高原及其邻区晚更新世高湖面事件的年代学问题——以柴达木盆地和腾格里沙漠为例

, PP. 52-65

Keywords: 青藏高原,高湖面,湖相沉积,14C测年,OSL测年

Full-Text   Cite this paper   Add to My Lib

Abstract:

?青藏高原及周边地区第四纪古湖泊演化时空序列已有诸多研究,然而对于晚更新世高湖面出现的时间框架还存在争议.可靠的测年技术是厘清这一科学问题的关键所在.基于14C和光释光(OSL)两种测年手段,以取自柴达木盆地和腾格里沙漠的两套湖相沉积序列为研究对象,开展了系统的沉积物定年工作.其研究结果如下:(1)柴达木盆地的湖相沉积岩芯的14C年代数据显示,老于30ka的14C年代可能存在低估;(2)腾格里沙漠地区的全新世湖相沉积物样品的OSL和14C测年结果在误差范围内一致,但对于较老(>30ka)的地层,两种测年技术产生了较大偏差,即OSL年龄远老于14C年龄;(3)两个地区的测年结果揭示了同一个现象:对于老于30ka的湖相沉积物(尤其是来自干旱-半干旱区),14C测年技术很可能会低估其沉积年龄;(4)以往基于14C数据建立的氧同位素三阶段晚期的高湖面事件年代框架可能存在低估,最新的OSL测年结果表明,该高湖面事件的真实年代很可能老于80ka.因此,对接近或老于30ka的14C年代,我们需要谨慎对待,而对现有的较老的14C年代数据的可靠性进行科学系统的评估,将有助于我们重新认识和厘清诸多科学问题和争议.

References

[1]  Chen F, Li G, Zhao H, et al. 2014. Landscape evolution of the Ulan Buh Desert in northern China during the late Quaternary. Quat Res, 81: 476-487
[2]  Chen K Z, Bowler J M. 1986. Late Pleistocene evolution of salt lake the Qaidam Basin, Qinghai Province, China. Paleogeogr Paleoclimatol Paleoecol, 54: 87-104
[3]  Daut G, M?usbacher R, Baade J, et al. 2010. Late Quaternary hydrological changes inferred from lake level fluctuations of Nam Co (Tibetan Plateau, China). Quat Int, 218: 86-93
[4]  Duller G A T. 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiat Meas, 37: 161-165
[5]  Galbraith R F, Roberts R G, Laslett G M, et al. 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia. Part I. Experimental design and statistical models. Archaeometry, 41: 339-364
[6]  Herzschuh U. 2006. Palaeo-moisture evolution in monsoonal Central Asia during the last 50000 years. Quat Sci Rev, 25: 163-178
[7]  Jain M, Murray A S, B?tter-Jensen L. 2003. Characterisation of blue-light stimulated luminescence components in different quartz samples: Implications for dose measurement. Radiat Meas, 37: 441-449
[8]  Lehmkuhl F, Haselein F. 2000. Quaternary palaeoenvironmental change on the Tibetan Plateau and adjacent areas Western China and (Western Mongolia). Quat Int, 65/66: 121-145
[9]  Li G, Jin M, Wen L, et al. 2014. Quartz and K-feldspar optical dating chronology of eolian sand and lacustrine sequence from the southern Ulan Buh Desert, NW China: Implications for reconstructing late Pleistocene environmental evolution. Paleogeogr Paleoclimatol Paleoecol, 393: 111-121
[10]  Li S H, Sun J M, Zhao H. 2002. Optical dating of dune sands in the northeastern deserts of China. Paleogeogr Paleoclimatol Paleoecol, 181: 419-429
[11]  Liu X, Lai Z, Fan Q, et al. 2010. Timing for high lake levels of Qinghai Lake in the Qinghai-Tibetan Plateau since the Last Interglaciation based on quartz OSL dating. Quat Geochron, 5: 218-222
[12]  Long H, Lai Z, Wang N A, et al. 2010. Holocene climate variations from Zhuyeze terminal lake records in East Asian monsoon margin in arid northern China: A multi-proxy and geomorphological study. Quat Res, 74: 46-56
[13]  Long H, Lai Z, Wang N A, et al. 2011. A combined luminescence and radiocarbon dating study of Holocene lacustrine sediments from arid northern China. Quat Geochron, 6: 1-9
[14]  Long H, Lai Z, Fuchs M, et al. 2012. Late Quaternary palaeolake evolution in Tengger Desert of northern China: Timing and possible forcing mechanisms. Glob Planet Change, 92-93: 119-129
[15]  Long H, Haberzettl T, Tsukamoto S, et al. 2014a. Luminescence dating of lacustrine sediments from Tangra Yumco (southern Tibetan Plateau) using post-IR IRSL signals from polymineral grains. Boreas, doi: 10.1111/bor.12096
[16]  Long H, Shen J, Tsukamoto S, et al. 2014b. Dry early Holocene revealed by sand dune accumulation chronology in Bayanbulak Basin (Xinjiang, NW China). Holocene, 24: 614-626
[17]  Madsen D B, Ma H Z, Rhode D, et al. 2008. Age constraints on the late Quaternary evolution of Qinghai Lake, Tibetan Plateau. Quat Res, 69: 316-325
[18]  Madsen D B, Lai Z, Sun Y, et al. 2014. Late Quaternary Qaidam lake histories and implications for an MIS 3 “Greatest Lakes” period in northwest China. J Paleolim, 51: 161-177
[19]  Martinson D G, Pisias N G, Hays J D, et al. 1987. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300000-year. Chronostratigraphy, 27: 1-29
[20]  Mischke S, Kramer M, Zhang C, et al. 2008. Reduced early Holocene moisture availability in the Bayan Har Mountains, northeastern Tibetan Plateau, inferred from a multi-proxy lake record. Paleogeogr Paleoclimatol Paleoecol, 267: 59-76
[21]  Mügler I, Gleixner G, Günther F, et al. 2010. A multi-proxy approach to reconstruct hydrological changes and Holocene climate development of Nam Co, Central Tibet. J Paleolim, 43: 625-648
[22]  Murray A S, Marten R, Johnston A, et al. 1987. Analysis for naturally occurring radionuclides at environmental concentrations by gamma spectrometry. J Radioanal Nucl Chem, 115: 263-288
[23]  Murray A S, Wintle A G. 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat Meas, 32: 57-73
[24]  O''Connell J F, Allen J. 1998. When did humans first arrive in greater Australia and why is it important to know? Evol Anthrop, 6: 132-146
[25]  Olley J M, Murray A S, Roberts R G. 1996. The effect of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments. Quat Sci Rev, 15: 751-760
[26]  Pachur H J, Wünnemann B, Zhang H C. 1995. Lake evolution in the Tengger Desert, Northwestern China, during the last 40000 years. Quat Res, 44: 171-180
[27]  Pigati J S, Quade J, Wilson J, et al. 2007. Development of low-background vacuum extraction and graphitization systems for 14C dating of old (40-0 ka) samples. Quat Int, 166: 4-14
[28]  Prescott J R, Hutton J T. 1994. Cosmic ray contribution to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiat Meas, 23: 497-500
[29]  Reimer P J, Baillie M G L, Bard E, et al. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50000 years cal BP. Radiocarbon, 51: 1111-1150
[30]  Rhode D, Ma H, Madsen D B, et al. 2010. Palaeoenvironmental and archaeological investigations at Qinghai Lake, western China: Geomorphic and chronometric evidence of lake level history. Quat Int, 218: 9-44
[31]  Rhodes T E, Gasse F, Lin R F, et al. 1996. A late Pleistocene Holocene lacustrine record from Lake Manas, Zunggar (northern Xinjiang Western China). Paleogeogr Paleoclimatol Paleoecol, 120: 105-125
[32]  Roberts R G, Jones R, Spooner N A, et al. 1994. The human colonisation of Australia: Optical dates of 53000 and 60000 years bracket human arrival at Deaf Adder Gorge, Northern Territory. Quat Sci Rev, 13: 575-583
[33]  Shi Y F, Yu G, Liu X D, et al. 2001. Reconstruction of the 30-40 ka BP enhanced Indian monsoon climate based on geological records from the Tibetan Plateau. Paleogeogr Paleoclimatol Paleoecol, 169: 69-83
[34]  Wischnewski J, Mischke S, Wang Y, et al. 2011. Reconstructing climate variability on the northeastern Tibetan Plateau since the last Lateglacial—A multi-proxy, dual-site approach comparing terrestrial and aquatic signals. Quat Sci Rev, 30: 82-97
[35]  Wünnemann B, Pachur H J, Li J, et al. 1998. Chronologie der pleistoz?nen und holoz?nen Seespiegelschwankungen des Gaxun Nur/Sogo Nur und Baijian Hu, Innere Mongolei, Nordwestchina (in German with English abstract). Petermanns Geographische Mitteilungen, 142: 191-206
[36]  Yang B, Shi Y F, Braeuning A, et al. 2004. Evidence for a warm-humid climate in arid northwestern China during 30-40 ka BP. Quat Sci Rev, 23: 2537-2548
[37]  Yang X, Scuderi L A. 2010. Hydrological and climatic changes in deserts of China since the Late Pleistocene. Quat Res, 73: 1-9
[38]  Yang X, Scuderi L, Paillou P, et al. 2011. Quaternary environmental changes in the drylands of China: A critical review. Quat Sci Rev, 30: 3219-3233
[39]  Zhang H C, Peng J L, Ma Y Z, et al. 2004. Late Quaternary palaeolake levels in Tengger Desert, NW China. Paleogeogr Paleoclimatol Paleoecol, 211: 45-58
[40]  Zhang H C, Ming Q Z, Lei G L, et al. 2006. Dilemma of dating on lacustrine deposits in a hyperarid inland basin of NW China. Radiocarbon, 48: 219-226
[41]  Zhang H C, Fan H F, Chang F Q, et al. 2008. AMS dating on the shell bar section from Qaidam Basin, NE Tibetan Plateau, China. Radiocarbon, 50: 255-265
[42]  Zhang J F, Zhou L P, Yu S Y. 2003. Dating fluvial sediments by optically stimulated luminescence: Selection of equivalent doses for age calculation. Quat Sci Rev, 22: 1123-1129
[43]  陈发虎, 范育新, 春喜, 等. 2008. 晚第四纪“吉兰泰-河套”古大湖的初步研究. 科学通报, 53: 1207-1219
[44]  陈克造, Bowler J M, Kelts K. 1990. 四万年来青藏高原的气候变迁. 第四纪研究, 1: 21-30
[45]  李秉孝, 蔡碧琴, 梁青生. 1989. 吐鲁番盆地艾丁湖沉积特征. 科学通报, 8: 608-610
[46]  李炳元, 张青松, 王富葆. 1991. 喀喇昆仑山——西昆仑山地区湖泊演化. 第四纪研究, 1: 64-71
[47]  李炳元. 2000. 青藏高原大湖期. 地理学报, 55: 174-182
[48]  隆浩, 王乃昂, 李育, 等. 2007. 腾格里沙漠西北缘湖泊沉积记录的区域风沙特征. 沉积学报, 25: 44-49
[49]  沈吉. 2012. 末次盛冰期以来中国湖泊时空演变及驱动机制研究综述: 来自湖泊沉积的证据. 科学通报, 57: 3228-3242
[50]  王富葆, 马春梅, 夏训诚, 等. 2008. 罗布泊地区自然环境演变及其对全球变化的响应. 第四纪研究, 28: 150-153
[51]  于革, 薛滨, 刘健, 等. 2001. 中国湖泊演变与古气候动力学研究. 北京: 气象出版社. 43-49
[52]  郑绵平, 向军, 魏新俊, 等. 1989. 青藏高原盐湖. 北京: 科学技术出版社. 190-269
[53]  郑绵平, 赵元艺, 刘俊英. 1996. 第四纪盐湖与古气候. 第四纪研究, 4: 297-307
[54]  朱大岗, 孟宪刚, 赵希涛, 等. 2004. 西藏纳木错和藏北高原古大湖晚更新世以来的湖泊演化与气候变迁. 中国地质, 31: 269-277
[55]  Aitken M J. 1998. An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence. Oxford: Oxford University Press. 267
[56]  Allen J, Holdaway S. 1995. The contamination of Pleistocene radiocarbon determinations in Australia. Antiquity, 69: 101-112
[57]  An Z S, Poter S C, Kutzbach J E, et al. 2000. Asynchronous Holocene optimum of the East Asian monsoon. Quat Sci Rev, 19: 743-762
[58]  Bailey R M, Smith B W, Rhodes E J. 1997. Partial bleaching and the decay form characteristics of quartz OSL. Radiat Meas, 27: 123-136
[59]  Bird M I, Ayliffe L K, Fifield L K, et al. 1999. Radiocarbon dating of “old” charcoal using a wet oxidation, stepped-combustion procedure. Radiocarbon, 41: 127-140
[60]  Briant R M, Bateman M D. 2009. Luminescence dating indicates radiocarbon age underestimation in Late Pleistocene fluvial deposits from eastern England. J Quat Sci, 24: 916-927
[61]  Busschers F S. 2011. Radiocarbon ghostdates from southern North Sea marine shells. Quat Int, 279-280: 76
[62]  Buylaert J P, Vandenberghe D, Murray A S, et al. 2007. Luminescence dating of old (>70 ka) Chinese loess: A comparison of single-aliquot OSL and IRSL techniques. Quat Geochron, 2: 9-14
[63]  Chapot M S, Roberts H M, Duller G A T, et al. 2012. A comparison of natural- and laboratory-generated dose response curves for quartz optically stimulated luminescence signals from Chinese Loess. Radiat Meas, 47: 1045-1052

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133