全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

FOAM海气耦合模式中印度洋海温年际变化在厄尔尼诺不同发展阶段的影响

, PP. 113-126

Keywords: 印度洋洋盆一致变化模态,印度洋偶极子模态,厄尔尼诺发展年,厄尔尼诺衰亡年,异常Walker环流,厄尔尼诺强度,厄尔尼诺周期

Full-Text   Cite this paper   Add to My Lib

Abstract:

?热带印度洋与热带太平洋是全球海气耦合最活跃的区域之一,两者的海温场中均存在着显著的年际变化模态,而且这两个洋盆间的海温异常模态间是相互联系的.本文采用一个复杂的全球海气耦合模式,模拟了两组分别包含和不包含热带印度洋海温年际变化对热带大气强迫的耦合试验,对比研究印度洋海温年际变化在厄尔尼诺事件演变中的贡献.结果表明,热带印度洋海温年际变化的存在使得厄尔尼诺事件的成熟期强度增加,且在厄尔尼诺的发展年秋季出现明显的快速增长.但在厄尔尼诺衰亡年,热带印度洋海温年际变化却使得热带太平洋暖海温减弱甚至转变为冷海温,使得厄尔尼诺事件的演变周期减短.具体来讲,发生于厄尔尼诺发展年的印度洋偶极子正异常事件能够在热带印度洋东部到热带西太平洋之间强迫出一支异常的下沉气流及异常Walker环流,加强原有的西太平洋低层西风异常,通过海洋平流及波动调整过程增强厄尔尼诺期间太平洋的暖海温异常;而在厄尔尼诺衰亡年出现的印度洋全洋盆增暖则在南亚季风爆发的背景下,在印度大陆上空产生一支明显的异常上升气流,激发西太平洋东传的Kelvin波及低层大气的东风异常,削弱了热带太平洋洋面的西风异常,促使厄尔尼诺从暖位相向冷位相转化,并使得西北太平洋出现反气旋式大气环流和降水的减少.因此,印度洋海温偶极子模态主要影响厄尔尼诺事件的发展阶段,而印度洋海温洋盆一致变化模态显著影响厄尔尼诺事件的衰亡阶段,两者均可通过改变大气环流而遥强迫太平洋海域.

References

[1]  胡海波, 洪晓媛, 张媛, 等. 2013. 厄尔尼诺衰亡年间南亚夏季风在印度洋对西北太平洋遥强迫中的作用. 中国科学: 地球科学, 43: 220-231
[2]  谭言科, 张人禾, 何金海, 等. 2004. 热带印度洋海温的年际变化与ENSO. 气象学报, 62: 831-840
[3]  吴国雄, 孟文. 1998. 赤道印度洋-太平洋地区海气系统的齿轮式藕合和ENSO事件Ⅰ. 资料分析. 大气科学, 22: 470-480
[4]  容新尧, 张人禾, Li T. 2010. 大西洋海温异常在ENSO影响印度—东亚夏季风中的作用. 科学通报, 55: 1397-1408
[5]  肖莺, 张祖强, 何金海. 2009. 印度洋偶极子研究进展综述. 热带气象学报, 25: 621-627
[6]  袁媛, 李崇银. 2008. 热带印度洋偶极子与ENSO事件关系的年代际变化. 科学通报, 53: 1429-1436
[7]  赵姗姗, 杨修群. 2004. 风应力桥梁作用下热带太平洋和热带印度洋相互作用的数值试验. 海洋学报, 26: 33-48
[8]  Annamalai H, Murtugudde R, Potemra J, et al. 2003. Coupled dynamics over the Indian Ocean: Spring initiation of the zonal mode. Deep-Sea Res Part Ii-Top Stud Oceanogr, 50: 2305-2330
[9]  Annamalai H, Liu P, Xie S P. 2005a. Southwest Indian Ocean SST variability: Its local effect and remote influence on Asian monsoons. J Clim, 18: 4150-4167
[10]  Annamalai H, Xie S P, McCreary J R, et al. 2005b. Impact of Indian Ocean Sea surface temperature on developing El Ni?o. J Clim, 18: 302-319
[11]  Cane M A, Zebiak S, Xue Y. 1995. Model studies of long-term behavior of ENSO, Natural Climate Variability on Decadal-to-Century Time Scales 442-457. Washington D C: Nat Res Council
[12]  Du Y, Xie S P, Huang G, et al. 2009. Role of air-sea interaction in the long persistence of El Ni?o-induced North Indian Ocean warming. J Clim, 22: 2023-2038
[13]  Du Y, Yang L, Xie S P. 2011. Tropical Indian Ocean influence on Northwest Pacific tropical cyclones in summer following strong El Ni?o. J Clim, 24: 315-322
[14]  Fischer A, Terray P, Guilyardi E, et al. 2005. Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. J Clim, 18: 3428-3449
[15]  Hu H B, He J, Wu Q, Zhang Y. 2011. The Indian Ocean''s asymmetric effect on the coupling of the Northwest Pacific SST and anticyclone anomalies during its spring-summer transition after El Nino. Jpn Oceanogr, 67: 315-321
[16]  Hu H B, Hong X Y, Zhang Y, et al. 2013. Remote forcing of Indian Ocean warming on Northwest Pacific during El Ni?o decaying years: A FOAM model approach. Chin J Oceanol Lim, 31: 1-9
[17]  Klein S, Soden B, Lau N. 1999. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J Clim, 12: 917-932
[18]  Liu Z, Kutzbach J, Wu L. 2000. Modeling climate shift of El Ni?o variability in the holocene. Geophys Res Lett, 27: 2265-2268
[19]  Liu, Z, Wu L, Gallimore R, et al. 2002. Search for the origins of Pacific Decadal climate variability. Geophys Res Lett, 29: 1404, doi: 10.1029/2001GL013735
[20]  McPhaden M J, Busalacchi A J, Cheney R, et al. 1998. The tropical ocean-global atmosphere observing system: A decade of progress. J Geophys Res, 103: 14169-14240
[21]  Murtugudde R, Mccreary J, Buaalacchi A. 2000. Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997-1998. J Geophys Res, 105: 3295-3306
[22]  Nagura M, Konda M. 2007. The seasonal development of an SST anomaly in the Indian Ocean and its relationship to ENSO. J Clim, 20: 38-52
[23]  Reynolds R, Smith T. 1994. Improved global sea surface temperature analyses using optimum interpolation. J Clim, 7: 929-948
[24]  Reynolds R, Marsico D. 1993. An improved real-time global sea surface temperature analysis. J Clim, 6: 114-119
[25]  Reynolds R. 1998. A real-time global sea surface temperature analysis. J Clim, 1: 75-86
[26]  Roxy M, Gualdi S, Drbohlav H L, et al. 2011. Seasonality in the relationship between ENSO and Indian Ocean dipole. Clim Dyn, 37: 221-236
[27]  Saji N H, Goswami B N, Vinayachandran P N, et al. 1999. A dipole in the tropical Indian Ocean. Nature, 401: 360-363
[28]  Tziperman E, Cane M, Zebiak S. 1995. Irregularity and locking to the seasonal cycle in an ENSO prediction model as explained by the quasi-periodicity route to chaos. J Atmos Sci, 52: 293-306
[29]  Wallace J, Rasmusson E, Mitchell T, et al. 1998. On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J Geophys Res, 103: 14241-14259
[30]  Wang B, Wu R, Fu X. 2000. Pacific-East Asia teleconnection: How does ENSO affect East Asian climate? J Clim, 13: 1517-1536
[31]  Wang C, Fiedler P. 2006. ENSO variability and the eastern tropical Pacific: A review. Prog Oceanogr, 69: 239-266
[32]  Wu L, Liu Z, Gallimore R, et al. 2003a. Pacific decadal variability: The tropical pacific mode and the north Pacific mode. J Clim, 16: 1101-1120
[33]  Wu L, Liu Z. 2003b. Decadal variability in the north Pacific: The eastern North Pacific mode. J Clim, 16: 3111-3131
[34]  Wu R, Ben P K. 2004. Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J Clim, 17: 4019-4031
[35]  Xie S P, Hu K M, Hafner J, et al. 2009. Indian ocean capacitor effect on Indo-Western Pacific climate during the summer following El Ni?o. J Clim, 22: 730-747
[36]  Xie S P, Du Y, Huang G, et al. 2010. Decadal shift in El Ni?o influences on Indo-western Pacific and east Asian climate in the 1970s. J Clim, 23: 3352-3368
[37]  Yukimoto S, Endoh M, Kitamura Y, et al. 1996. Interannual and interdecadal variabilities in the Pacific in an MRI coupled GCM. Clim Dyn, 12: 667-683
[38]  Zhong Y, Liu J, Jacob R. 2008. Origin of Pacific multidecadal variability in community climate system model, Version 3 (CCSM3): A combined statistical and dynamical assessment. J Clim, 20: 114-133

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133