全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

卫星编队用于消除海潮模型混频误差影响的可行性研究

, PP. 169-176

Keywords: 卫星编队,混频误差,海潮模型,重力场反演

Full-Text   Cite this paper   Add to My Lib

Abstract:

?目前时变信号模型的混频误差成为时变重力场解算精度的主要限制之处,本文给出三种适合于重力任务的包含不同方向观测量的卫星编队GRACE-type,Pendulum-type和n-s-Cartwheel-type,设计两种方案并通过仿真实验研究了卫星编队用于消除海潮模型混频误差影响的可行性.结果表明,当不考虑模型混频误差时,n-s-Cartwheel编队能够为重力场解算提供最好的条件,与GRACE-type编队相比,对重力场解算精度提高达43%;当海潮模型的混频误差成为主要误差源时,利用卫星编队由动力法反演重力场并不能消除混频及提高重力场的解算精度,包含径向观测量的Cartwheel-type编队由于对重力场的高阶变化更为敏感,重力场结果中包含了更多的海潮模型误差的高频信号,误差急剧增大.

References

[1]  罗志才, 李琼, 张坤, 等. 2012. 利用GRACE时变重力场反演南极冰盖的质量变化趋势. 中国科学: 地球科学, 42: 1590-1596
[2]  赵倩, 姜卫平, 徐新禹, 等. 2011. GRACE卫星重力场解算中混频误差影响的探讨. 大地测量与地球动力学, 31: 123-126
[3]  赵倩. 2012. 利用卫星编队探测地球重力场的方法研究与仿真分析. 博士学位论文. 武汉: 武汉大学
[4]  Chen J L, Wilson C R, Swo K W. 2006. Optimized smoothing of gravity recovery and climate experiment (GRACE) time-variable gravity observations. J Geophys Res, 111: B06408, doi: 10.1029/2005JB004064
[5]  Ditmar P, Teixeira da encarnacao J, Hashemi F H. 2011. Understanding data noise in gravity field recovery on the basis of inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE. J Geodesy, 86: 441-465
[6]  Elsaka B. 2010. Simulated satellite formation flights for detecting temporal variations of the earth’s gravity field. Ph.D. Dissertation. Germary: University of Bonn
[7]  Han S C, Jekeli C, Shum C K. 2004. Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field. J Geophys Res, 109: B04403, doi: 10.1029/2003JB002501
[8]  Jekeli C. 1996. Spherical harmonic analysis aliasing and filtering. J Geodesy, 70: 214-223
[9]  Kim J. 2000. Simulation Study of A Low-Low Satellite-to-Satellite Tracking Mission. Doctoral Dissertation. Austin: University of Texas
[10]  Klees R, Revtova E A, Gunter B C, et al. 2008. The design of an optimal filter for monthly GRACE gravity models. Geophys J Int, 175: 417-432
[11]  Kurtenbach E, Mayer-Gurr T, Eicker A. 2009. Deriving daily snapshots of the Earth’s gravity field from GRACE L1B data using Kalman filtering. Geophys Res Lett, 36: L17102, doi: 10.1029/2009GL039564
[12]  Loomis B D, Nerem R S, Luthcke S B. 2012. Simulation study of a follow-on gravity mission to GRACE. J Geodesy, 86: 319-335
[13]  Lyard F, Lefevre F, Letellier T, et al. 2006. Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn, 56: 394-415
[14]  Ray R D, Luthcke S B. 2006. Tide model errors and GRACE gravimetry: Towards a more realistic assessment. Geophys J Int, 167: 1055-1059
[15]  Savcenko R, Bosch W. 2008. EOT08a-empirical ocean tide model from multi-mission satellite altimetry. Report No.81. Deutsches Geodatisches Forschungsinstitut (DGFI), Munchen, Germany
[16]  Seo K W, Wilson C R, Han S C, et al. 2008a. Gravity recovery and climate experiment (GRACE) alias error from ocean tides. J Geophys Res, 113: B03405, doi: 10.1029/ 2006JB004747
[17]  Seo K W, Wilson C R, Chen J L, et al. 2008b. GRACE’s spatial aliasing error. Geophys J Int, 172: 41-48
[18]  Sneeuw N, Flury J, Rummel R. 2005. Science requirements on future missions and simulated mission scenarios. Earth Moon Planets, 94: 113-142
[19]  Tapley B D, Bettadpur S, Ries J C, et al. 2004. GRACE measurements of mass variability in the Earth system. Science, 305: 503-505
[20]  Visser P, Sneeuw N, Reubelt T, et al. 2010. Space-borne gravimetric satellite constellations and ocean tides: Aliasing effects. Geophys J Int, 181: 789-805
[21]  Wahr J, Molenaar M, Bryan F. 1998. Time variablility of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res, 103: 30205-30229
[22]  Wahr J, Swenson S, Zlotnicki V, et al. 2004. Time-variable gravity from GRACE: First results. Geophys Res Lett, 31: L11501, doi: 10.1029/2004GL019779
[23]  Watkins M, Sprague G, Case K, et al. 2008. Time Variable Gravity Mapping Mission (Grace Follow-On/Grace Ⅱ) Study. In: GRACE Science Team Meeting. 237-250
[24]  Wiese D N, Folkner W M , Nerem R S. 2009. Alternative mission architectures for a gravity recovery satellite mission. J Geodesy, 83: 569-581
[25]  Wiese D N, Visser P, Nerem R S. 2011. Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors. Adv Space Res, 48: 1094-1107
[26]  Zenner L, Gruber T, J?ggi A, et al. 2010. Propogation of atmospheric model errors to gravity potential harmonics-impact on GRACE de-aliasing. Geophys J Int, 182: 797-807

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133