全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国第四纪花粉现代过程:进展与问题

, PP. 1661-1682

Keywords: 花粉现代过程,花粉产量,搬运与沉积,花粉保存,花粉-植被-气候,人类活动

Full-Text   Cite this paper   Add to My Lib

Abstract:

?花粉现代过程是第四纪花粉分析的基础,对正确解释地层花粉组合,定量恢复古植被、古气候至关重要.近年来,孢粉学者对花粉现代过程开展了很多卓有成效的工作,取得了长足进展.本文基于前人研究成果和笔者近几十年对花粉现代过程的探索,从花粉产量、花粉传播、花粉源范围、花粉沉积、花粉保存、花粉与植被和气候的关系及人类活动和土地利用等多个方面进行了综合探讨,介绍和评述了第四纪花粉现代过程的进展与问题.通过对比已有研究成果,笔者认为近几十年来国内外孢粉学者在古气候和古植被定量重建研究中取得了重要进展;但不同重建方法各有优缺点,且适用范围不同;花粉产量、花粉源范围、花粉传播与散布、古气候和古植被重建方法和模型等尚不完善,都有待改进;更希望尝试和研发新模型和新方法,进而获得更可信的古气候和古植被记录.虽然国外学者较早开展了花粉与人类活动关系研究,但目前中国在花粉与人类活动和土地利用研究方面处于领先地位,率先开展了人类活动强度定量重建的尝试,希望国内相关学者在今后研究中继续予以关注,以期在地层中定量识别和提取古人类活动信息方面有所突破.此外,国内外对花粉沉积过程和花粉保存研究尚显不足,虽然部分学者就其开展了部分实验和模拟,但缺乏自然环境条件下花粉沉积和埋藏过程研究,亟待开展相关工作.

References

[1]  Zhang Y, Kong Z C, Zhang H. 2013. Multivariate analysis of modern and fossil pollen data from the central Tianshan Mountains, Xinjiang, NW China. Clim Change, 120:945-957
[2]  Zhao Y, Li F R, Hou Y T, Sun J H, Zhao W W, Tang Y, Li H. 2012a. Surface pollen and its relationships with modern vegetation and climate on the Loess Plateau and surrounding deserts in China. Rev Palaeobot Palynol, 181:47-53
[3]  Zhao Y, Liu H Y, Li F R, Huang X Z, Sun J H, Zhao W W, Herzschuh U, Tang Y. 2012b. Application and limitations of the Artemisia/Chenopodiaceae pollen ratio in arid and semi-arid China. Holocene, 22:1385-1392
[4]  Zhao Y, Yu Z C, Chen F H, Zhang J W, Yang B. 2009. Vegetation response to Holocene climate change in monsoon-influenced region of China. Earth-Sci Rev, 97:242-256
[5]  Zheng Z, Wei J H, Huang K Y, Xu Q H, Lu H Y, Tarasov P, Luo C X, Beaudouin C, Deng Y, Pan A D, Zheng Y W, Luo Y L, Nakagawa T, Li C H, Yang S X, Peng H H, Cheddadi R. 2014. East Asian pollen database:Modern pollen distribution and its quantitative relationship with vegetation and climate. J Biogeogr, 41:1819-1832
[6]  曹现勇, 田芳, 许清海, 李月丛, 陈利, 白旋. 2009. 氧化环境对油松花粉保存影响实验研究. 冰川冻土, 31:571-575
[7]  陈瑜, 倪健. 2008. 利用孢粉记录定量重建大尺度古植被格局. 植物生态学报, 32:1201-1212
[8]  戴璐, 翁成郁. 2010. 西太平洋海域冬季花粉传播观测及其在东亚季风研究中的意义. 中国科学:地球科学, 40:893-902
[9]  邓韫, 郑卓, Cour P, 黄赐璇, Duzer D, Calleja M, Roben G, Berne S, Vagnier P. 2002. 中国东部花粉比值与气候的关系及其在定量古气候重建中的应用. 古生物学报, 41:508-516
[10]  丁伟, 庞瑞洺, 许清海, 李月丛, 曹现勇. 2011. 中国东部暖温带低山丘陵区表土花粉对人类活动的指示意义. 科学通报, 56:839-847
[11]  黄小忠, 赵艳, 程波, 陈发虎, 徐俊荣. 2004. 新疆博斯腾湖表层沉积物的孢粉分析. 冰川冻土, 26:602-609
[12]  李洁, 许清海, 张生瑞, 穆会双, 李阳, 李曼玥, 胡亚楠, 梁剑. 2013. 相对花粉产量及其在古植被定量重建中的应用. 第四纪研究, 33:1101-1110
[13]  李文漪, 姚祖驹. 1993. 中国北、中亚热带晚第四纪植被与环境研究. 北京:海洋出版社. 152
[14]  李宜垠, 张新时, 周广胜. 2000. 中国东北样带(NECT)东部森林区的植被与表土花粉的定量关系. 植物学报, 42:81-88
[15]  李宜垠, 周力平, 崔海亭. 2008. 人类活动的孢粉指示体. 科学通报, 53:991-1002
[16]  李月丛, 许清海, 葛亚汶, 李英, 吕素青, 曹现勇, 田芳, 郝利生. 2014. 黄土高原中东部沙尘与非沙尘天气花粉组成及来源范围. 地理研究, 33:2367-2381
[17]  李月丛, 许清海, 阳小兰, 郑振华. 2005. 中国草原区主要群落类型花粉组合特征. 生态学报, 25:555-564
[18]  刘东生. 2004. 开展"人类世"环境研究, 做新时代地学的开拓者—纪念黄汲清先生的地学创新精神. 第四纪研究, 24:369-378
[19]  刘鸿雁. 2002. 第四纪生态学与全球变化. 北京:科学出版社. 210
[20]  倪健. 2013. 孢粉生物群区化与古植被定量重建. 第四纪研究, 33:1091-1100
[21]  庞瑞洺, 许清海, 丁伟, 张生瑞. 2010. 河北省中南部农田孢粉组合特征. 地理学报, 65:1345-1354
[22]  秦锋, 赵艳. 2013. 基于孢粉组合定量重建古气候的方法在中国的运用及思考. 第四纪研究, 33:1054-1068
[23]  宋长青, 孙湘君, 吕厚远. 1997. 中国北方花粉-气候因子转换函数建立及应用. 科学通报, 42:2182-2186
[24]  宋长青, 孙湘君. 1997. 花粉-气候因子转换函数建立及其对古气候因子定量重建. 植物学报, 39:554-560
[25]  孙湘君, 杜乃秋, 翁成郁, 林瑞芬, 卫克勤. 1994. 新疆玛纳斯湖盆周围近14000年以来的古植被古环境. 第四纪研究, 14:239-248
[26]  孙湘君, 宋长青, 陈旭东. 1999. 中国第四纪孢粉数据库(CPD)和生物群区(Biome6000). 地球科学进展, 14:407-411
[27]  孙湘君, 王琫瑜, 宋长青. 1996. 中国北方部分科属花粉-气候响应面分析. 中国科学D辑:地球科学, 26:431-436
[28]  孙湘君, 吴玉书. 1987. 云南滇池表层沉积物中花粉和藻类的分布规律及数量特征. 海洋地质与第四纪地质, 7:81-92
[29]  田芳, 许清海, 李月丛, 曹现勇, 王学丽, 张丽艳. 2009. 中国北方季风尾闾区不同类型湖泊表层沉积物花粉组合特征. 科学通报, 54:479-487
[30]  王开发, 王宪曾. 1983. 孢粉学概论. 北京:北京大学出版社. 205
[31]  徐景先, 王宇飞, 李承森. 2000. 定量分析第三纪气候与环境的新方法—共存类群生态因子分析法. 见:李承森, 主编. 植物科学进展(第三卷). 北京:高等教育出版社. 195-203
[32]  许清海, 曹现勇, Tian F, 张生瑞, 李月丛, 李曼玥, 李洁, 刘耀亮, 梁剑. 2013. 中国北方典型草原区花粉产量及其定量重建古植被的作用. 中国科学:地球科学, 12:2016-2028
[33]  许清海, 李月丛, 李育, 阳小兰, 张振卿, 贾红娟. 2006. 现代花粉过程与第四纪环境研究若干问题讨论. 自然科学进展, 16:647-656
[34]  许清海, 李月丛, 阳小兰, 郑振华. 2005. 中国北方几种主要森林群落表土花粉组合特征研究. 第四纪研究, 25:585-597
[35]  许清海, 李月丛, 阳小兰, 郑振华. 2007. 中国北方几种主要花粉类型与植被定量关系. 中国科学D辑:地球科学, 37:192-205
[36]  许清海, 阳小兰, 王子惠, 吴忱, 孟令尧, 姚祖驹. 1995. 河流搬运花粉的初步研究. 植物学报, 37:829-832
[37]  许清海, 阳小兰, 杨振京, 梁文栋, 孙黎明. 2004. 孢粉分析定量重建燕山地区5000年来的气候变化. 地理科学, 24:339-345
[38]  许清海, 张生瑞. 2013. 花粉源范围研究进展. 地球科学进展, 28:968-975
[39]  杨士雄, 郑卓, 黄康有, 王建华, 王晓静, 许清海, 李杰. 2010. 亚热带稻作区表土孢粉研究及其考古学应用. 第四纪研究, 30:262-272
[40]  于革, 刘平妹, 薛滨, 李政益. 2002. 台湾中部和北部山地植被垂直带表土花粉和植被重建. 科学通报, 47:1663-1666
[41]  于革. 1999. 花粉植被化与全球古植被计划研究. 地球科学进展, 14:306-311
[42]  赵世林, 王荣科, 郭彦波, 谭建龙, 石志增. 1993. 太行山中段的焚风. 气象, 19:3-6
[43]  郑卓, Guiot J. 1999. 我国热带地区40万年以来古气候的定量恢复. 中山大学学报(自然科学版), 38:94-98
[44]  郑卓, 黄康有, 魏金辉, 乐远福, 万秋池, 许清海, 吕厚远, 罗运利, 罗传秀, 郑艳伟, 李春海, 杨士雄, 李杰, 潘安定, 邓韫, 魏海成, Beaudouin C, Tarasov P, Nakagawa T, Cheddadi R. 2013. 中国及其邻区现代孢粉数据:空间分布特征和定量古环境重建中的应用. 第四纪研究, 33:1037-1053
[45]  郑卓, 黄康有, 许清海, 吕厚远, Cheddadi R, 罗运利, Beaudouin C, 罗传秀, 郑艳伟, 李春海, 魏金辉, 杜春彬. 2008. 中国表土花粉与建群植物地理分布的气候指示性对比. 中国科学D辑:地球科学, 38:701-714
[46]  郑卓, 郑艳伟, 黄康有, 魏金辉, 许清海, 吕厚远, 罗运利, 罗传秀, Beaudouin C. 2009. 基于遥感数据对中国表土花粉进行植被覆盖度定量估算的研究. 古生物学报, 48:228-239
[47]  中国科学院植物所. 1983. 中国高等植物图鉴(第五册). 北京:科学出版社. 1144
[48]  朱艳, 程波, 陈发虎, 张家武. 2004. 石羊河流域现代孢粉传播研究. 科学通报, 49:15-21
[49]  Andersen S T. 1970. The relative pollen productivity and pollen representation of north european trees, and correction factors for tree pollen spectra determined by surface pollen analyses from forests. Danmarks Geologiske Undersogelse, Kobenhavn(Ser. Ⅱ), 96:1-99
[50]  Behre K E. 1986. Anthropogenic Indicators in Pollen Diagram. Rotterdam:Balkema. 232
[51]  Birks H H, Birks H J B, Kaland P E, Moe D. 1988. The Cultural Landscape-Past, Present and Future. Cambridge:Cambridge University Press. 521
[52]  Birks H J B. 2003. Quantitative palaeoenvironmental reconstructions from Holocene biological data. In:Mackay A W, Battarbee R W, Birks H J B, Oldfield F, eds. Global Change in the Holocene. London:Hodder Education. 107-123
[53]  Bonny A P. 1978. The effect of pollen recruitment processes on pollen distribution over the sediment surface of a small lake in Cumbria. J Ecol, 66:385-416
[54]  Bonny A P. 1980. Seasonal and annual variation over 5 years in contemporary airborne pollen trapped at a Cumbrian lake. J Ecol, 68:421-441
[55]  Brooks J, Elsik W C. 1974. Chemical oxidation(using ozone) of the spore wall of Lycopodium Clavatum. Grana, 14:85-91
[56]  Bunting M J, Tipping R. 2000. Sorting dross from data:Possible indicators of post-depositional assemblage biasing in archaeological palynology. Human Ecodynamics. Symp Assoc Environmental Archaeol, 19:63-68
[57]  Brostr?m A, Nielsen A B, Gaillard M J, Hjelle K, Mazier F, Binney H, Bunting J, Fyfe R, Meltsov V, Poska V, R?s?nen S, Soepboer W, von Stedingk H, Suutari H, Sugita S. 2008. Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation:A review. Veg Hist Archaeobot, 17:461-478
[58]  Brostr?m A, Sugita S, Gaillard M J. 2004. Pollen productivity estimates for the reconstruction of past vegetation cover in the cultural landscape of southern Sweden. Holocene, 14:368-381
[59]  Brown A G, Carpenter R G, Walling D E. 2007. Monitoring fluvial pollen transport, its relationship to catchment vegetation and implications for palaeoenvironmental studies. Rev Palaeobot Palynol, 147:60-76
[60]  Brush G S, Brush L M. 1972. Transport of pollen in a sediment-laden channel:A laboratory study. Am J Sci, 272:359-381
[61]  Bunting M J, Armitage R, Binney H A, Waller M P. 2005. Estimates of ''relative pollen productivity'' and ''relevant source area of pollen'' for major tree taxa in two Norfolk(UK) woodlands. Holocene, 15:459-465
[62]  Bunting M J, Hjelle K L. 2010. Effect of vegetation data collection strategies on estimates of relevant source area of pollen(RSAP) and relative pollen productivity estimates(relative PPE) for non-arboreal taxa. Veg Hist Archaeobot, 19:365-374
[63]  Bunting M J, Middleton R. 2009. Equifinality and uncertainty in the interpretation of pollen data:The Multiple Scenario Approach to reconstruction of past vegetation mosaics. Holocene, 19:799-803
[64]  Campbell I D, Campbell C. 1994. Pollen preservation:Experimental wet-dry cycles in saline and desalinated sediments. Palynology, 18:5-10
[65]  Campbell I D. 1991. Experimental mechanical destruction of pollen grains. Palynology, 15:29-33
[66]  Carpelan C, Hicks S. 1995. Ancient Saami in Finnish Lapland and their impact on the forest vegetation. In:Butlin R, Roberts N, eds. Ecological Relations in Historical Times. Oxford:Blackwell. 195-205
[67]  Chamberlain A C. 1975. The movement of particles in plant communities. In:Monteith J L, ed. Vegetation and the Atmosphere 1. New York:Academic Press. 155-203
[68]  Chen Y, Ni J, Herzschuh U. 2010. Quantifying modern biomes based on surface pollen data in China. Glob Planet Change, 74:114-131
[69]  Cour P, Zheng Z, Duzer D, Calleja M, Yao Z. 1999. Vegetational and climatic significance of modern pollen rain in northwestern Tibet. Rev Palaeobot Palynol, 104:183-204
[70]  Court-Picon M, Buttler A, Beaulieu J L. 2005. Modern pollen-vegetation relationships in the Champsaur valley(French Alps) and their potential in the interpretation of fossil pollen records of past cultural landscapes. Rev Palaeobot Palynol, 135:13-39
[71]  Crutzen P J, Stoermer E F. 2000. The "Anthropocene". IGBP Newsletter, 41:17-18
[72]  Cushing E J. 1967. Evidence for differential pollen preservation in late Quaternary sediments in Minnesota. Rev Palaeobot Palynol, 4:87-101
[73]  Davis B A S, Brewer S, Stevenson A C, Guiot J. 2003. The temperature of Europe during the Holocene reconstructed from pollen data. Quat Sci Rev, 22:1701-1716
[74]  Davis M B, Brubaker M B. 1973. Differential sedimentation of pollen grains in lakes. Limnol Oceanogr, 18:635-646
[75]  Davis M B, Moeller R E, Ford J. 1984. Sediment focusing and pollen influx. In:Haworth Y, Lund J W G, eds. Lake Sediments and Environmental History. Leicester:University of Leicester Press. 261-293
[76]  Davis M B. 1963. On the theory of pollen analysis. Am J Sci, 261:897-912
[77]  Davis M B. 1968. Pollen grains in lake sediments:Redeposition caused by seasonal water circulation. Science, 162:796-799
[78]  Davis M B. 2000. Palynology after Y2K-understanding the source area of pollen in sediments. Annu Rev Earth Planet Sci, 28:1-18
[79]  DeBusk Jr G H. 1997. The distribution of pollen in the surface sediments of Lake Malawi, Africa, and the transport of pollen in large lakes. Rev Palaeobot Palynol, 97:123-153
[80]  Dimbleby G W. 1985. The Palynology of Archaeological Sites. London:Academic Press. 176
[81]  Elenga H, Peyron O, Bonnefille R, Jolly D, Cheddadi R, Guiot J, Andrieu V, Bottema S, Buchet G, De Beaulieu J L, Hamilton A C, Maley J, Marchant R, Perez-Obiol R, Reille M, Riollet G, Scott L, Straka H, Taylor D, Van Campo E, Vincens A, Laarif F, Jonson H. 2000. Pollen-based biome reconstruction for southern Europe and Africa 18000 yr BP. J Biogeogr, 27:621-634
[82]  El-Moslimany A P. 1990. Ecological significance of common nonarboreal pollen:Examples from drylands of the Middle East. Rev Palaeobot Palynol, 64:343-350
[83]  Erdtman G. 1969. Handbook of Palynology:Morphology, Taxonomy, Ecology. Copenhagen:Munksgaard. 486
[84]  Fagerlind F. 1952. The real signification of pollen diagrams. Bot Notiser, 105:185-224
[85]  Fall P L. 1987. Pollen taphonomy in a canyon stream. Quat Res, 28:393-406
[86]  Fauquette S, Guiot J, Suc J P. 1998. A method for climatic reconstruction of the Mediterranean Pliocene using pollen data. Paleogeogr Paleoclimatol Paleoecol, 144:183-201
[87]  Filipova-Marinova M V, Kvavadze E V, Connor S E, Sj?gren P. 2010. Estimating absolute pollen productivity for some European Tertiary-relict taxa. Veg Hist Archaeobot, 19:351-364
[88]  Firbas F. 1937. Der Pollenanalytysche Nachweis des Getreidebaus. Zeitschrift fur Botanik, 31:447-448
[89]  Fredskild B, Wagner P. 1974. Pollen and fragments of plant tissue in core samples from the Greenland Ice Cap. Boreas, 3:105-108
[90]  Gaillard M J, Birks H J B, Emanuelsson U, Berglund B E. 1992. Modern pollen/land-use relationships as an aid in the reconstruction of past land-uses and cultural landscapes:An example from south Sweden. Veg Hist Archaeobot, 1:3-17
[91]  Iversen J. 1949. The influence of prehistoric man on vegetation. Danmarks geologiske Undersgelse, Series IV, 3:1-25
[92]  Jackson S T, Wong A. 1994. Using forest patchiness to determine pollen source areas of closed-canopy pollen assemblages. J Ecol, 82:88-98
[93]  Gaillard M J, Sugita S, Mazier F, Trondman A K, Brostrom A, Hickler T, Kaplan J O, Kjellstr?m E, Kokfelt U, Kunes P, Lemmen C, Miller P, Olofsson J, Poska A, Rundgren M, Smith B, Strandberg G, Fyfe R, Nielsen A B, Alenius T, Balakauskas L, Barnekow L, Birks H J B, Bjune A, Bjorkman L, Giesecke T, Hjelle K, Kalmina L, Kangur M, Vand Der Knaap W O, Koff T, Lageras P, Latalowa M, Leydet M, Lechterbeck J, Lindbladh M, Odgaard B, Peglar S, Segerstrom U, Von Stedingk H, Sepp? H. 2010. Holocene land-cover reconstructions for studies on land cover-climate feedbacks. Clim Past, 6:483-499
[94]  Guiot J. 1990. Methodology of the last climatic cycle reconstruction in France from pollen data. Paleogeogr Paleoclimatol Paleoecol, 80:49-69
[95]  Hall S A. 1989. Pollen analysis and paleoecology of alluvium. Quat Res, 31:435-438
[96]  Havinga A J. 1964. Investigation into the differential corrosion susceptibility of pollen and spores. Pollen Spores, 6:621-635
[97]  Havinga A J. 1967. Palynology and pollen preservation. Rev Palaeobot Palynol, 2:81-98
[98]  Havinga A J. 1984. A 20-year experimental investigation into the differential corrosion susceptibility of pollen and spores in various soil types. Pollen Spores, 26:541-558
[99]  Herzschuh U, Kürschner H, Battarbee R, Holmes J. 2006. Desert plant pollen production and a 160-year record of vegetation and climate change on the Alashan Plateau, NW China. Veg Hist Archaeobot, 15:181-190
[100]  Herzschuh U, Tarasov P, Wünnemann B, Hartmann K. 2004. Holocene vegetation and climate of the Alashan Plateau, NW China, reconstructed from pollen data. Paleogeogr Paleoclimatol Paleoecol, 211:1-17
[101]  Hicks S, Birks H J B. 1996. Numerical analysis of modern and fossil pollen spectra as a tool for elucidating the nature of fine-scale human activities in boreal areas. Veg Hist Archaeobot, 5:257-272
[102]  Hicks S. 1993. Pollen evidence of localized impact on the vegetation of northernmost Finland by hunter-gatherers. Veg Hist Archaeobot, 2:137-144
[103]  Hicks S. 2001. The use of annual arboreal pollen deposition values for delimiting tree-lines in the landscape and exploring models of pollen dispersal. Rev Palaeobot Palynol, 117:1-29
[104]  Hjelle K L. 1997. Relationships between pollen and plants in human-influenced vegetation types using presence-absence data in western Norway. Rev Palaeobot Palynol, 99:1-16
[105]  Hjelle K L. 1999. Modern pollen assemblages from mown and grazed vegetation types in western Norway. Rev Palaeobot Palynol, 107:55-81
[106]  Holloway R G. 1989. Experimental mechanical pollen degradation and its application to Quaternary age deposits. Texas J Sci, 41:131-145
[107]  Horrocks M, Ogden J. 1994. Modern pollen spectra and vegetation of Mt. Hauhungatahi, central North Island, New Zealand. J Biogeogr, 21:637-649
[108]  Jacobson G L, Bradshaw R H W. 1981. The selection of sites for paleovegetational studies. Quat Res, 16:80-96
[109]  Janssen C R. 1966. Recent pollen spectra from the deciduous and coniferous deciduous forests of Northeastern Minnesota:A study in pollen dispersal. Ecology, 47:804-825
[110]  Jiang W Y, Guo Z T, Sun X J, Wu H B, Chu G Q, Yuan B Y, Hatté C, Guiot J. 2006. Reconstruction of climate and vegetation changes of Lake Bayanchagan(Inner Mongolia):Holocene variability of the East Asian monsoon. Quat Res, 65:411-420
[111]  Johansen S, Hafsten U. 1988. Airborne pollen and spore registrations at Ny-?lesund, Svalbard, summer 1986. Polar Res, 6:11-17
[112]  Knaap Van der W O. 1987. Long-distance transported pollen and spores on Spitsbergen and Jan Mayen. Pollen Spores, 24:449-453
[113]  Koff T. 2001. Pollen influx into Tauber traps in Estonia in 1997-1998. Rev Palaeobot Palynology, 117:53-62
[114]  Kutzbach J, Gallimore R, Harrison S, Behling P, Selin R, Laarif F. 1998. Climate and biome simulations for the past 21000 years. Quat Sci Rev, 17:473-506
[115]  Kvamme M. 1988. Pollen analytical studies of mountain summer-farming in western Norway. In:Birks H H, Birks H J B, Kaland P E, Moe D, eds. The Cultural Landscape—Past, Present and Future. Cambridge:Cambridge University Press. 349-367
[116]  Li C H, Zheng Y F, Yu S Y, Li Y X, Shen H D. 2012. Understanding the ecological background of rice agriculture on the Ningshao Plain during the Neolithic Age:Pollen evidence from a buried paddy field at the Tianluoshan cultural site. Quat Sci Rev, 35:131-138
[117]  Li J Y, Xu Q H, Gaillard M J, Sepp? H, Li Y C, Hun L Y, Li M Y. 2013. Modern pollen and land-use relationships in the Taihang mountains, Hebei province, northern China:A first step towards quantitative reconstruction of human-induced land cover changes. Veg Hist Archaeobot, 22:463-477
[118]  Li J Y, Zhao Y, Xu Q H, Zheng Z, Lu H Y, Luo Y L, Li Y C, Li C H, Sepp? H. 2014. Human influence as a potential source of bias in pollen-based quantitative climate reconstructions. Quat Sci Rev, 99:112-121
[119]  Li M Y, Xu Q H, Zhang S R, Li Y C, Ding W, Li J Y. 2015b. Indicator pollen taxa of human-induced and natural vegetation in Northern China. Holocene, 25:686-701
[120]  Li Y Y, Nielsen A B, Zhao X Q, Shan L J, Wang S Z, Wu J, Zhou L P. 2015a. Pollen production estimates(PPEs) and fall speeds for major tree taxa and relevant source areas of pollen(RSAP) in Changbai Mountain, northeastern China. Rev Palaeobot Palynol, 216:92-100
[121]  Liu H Y, Cui H T, Pott R, Speier M. 1999. The surface pollen of the woodland-steppe ecotone in southeastern Inner Mongolia, China. Rev Palaeobot Palynol, 105:237-250
[122]  Liu H Y, Wang Y, Tian Y H, Zhu J L, Wang H Y. 2006. Climatic and anthropogenic control of surface pollen assemblages in East Asian steppes. Rev Palaeobot Palynol, 138:281-289
[123]  Liu K B. 1988. Quaternary history of the temperate forests of China. Quat Sci Rev, 7:1-20
[124]  Liu K B, Lam N S. 1985. Paleovegetational reconstruction based on modern and fossil pollen data:An application of Discriminant Analysis. Ann Assoc Am Geogr, 75:115-130
[125]  Lowe J J, Walker M J C. 1997. Reconstructing Quaternary Environments. 2nd ed. Londres:Longman. 472
[126]  Lu H Y, Wu N Q, Liu K B, Zhu L P, Yang X D, Yao T D, Wang L, Li Q, Liu X Q, Shen C M, Li X Q, Tong G B, Jiang H. 2011. Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes. Quat Sci Rev, 30:947-966
[127]  Luly J G. 1997. Modern pollen dynamics and surficial sedimentary processes at Lake Tyrrell, semi-arid northwestern Victoria, Australia. Rev Palaeobot Palynol, 97:301-318
[128]  Luo C X, Zheng Z, Tarasov P, Nakagawa T, Pan A D, Xu Q H, Lu H Y, Huang K Y. 2010. A potential of pollen-based climate reconstruction using a modern pollen-climate dataset from arid northern and western China. Rev Palaeobot Palynol, 160:111-125
[129]  Luo C X, Zheng Z, Tarasov P, Pan A D, Huang K Y, Beaudouin C, An F Z. 2009. Characteristics of the modern pollen distribution and their relationship to vegetation in the Xinjiang region, northwestern China. Rev Palaeobot Palynol, 153:282-295
[130]  Lynch E A. 1996. The ability of pollen from small lakes and ponds to sense fine-scale vegetation patterns in the Central Rocky Mountains, USA. Rev Palaeobot Palynol, 94:197-210
[131]  Mazier F, Nielsen A B, Brostr?m A, Sugita S, Hicks S. 2012. Signals of tree volume and temperature in a high-resolution record of pollen accumulation rates in northern Finland. J Quat Sci, 27:564-574
[132]  McAndrews J H. 1984. Pollen analysis of the 1973 ice core from Devon Island Glacier, Canada. Quat Res, 22:68-76
[133]  Minckley T A, Bartlein P J, Whitlock C, Shuman B N, Williams J W, Davis O K. 2008. Associations among modern pollen, vegetation, and climate in western North America. Quat Sci Rev, 27:1962-1991
[134]  Mosbrugger V, Utescher T. 1997. The coexistence approach—A method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Paleogeogr Paleoclimatol Paleoecol, 134:61-86
[135]  Nakagawa T, Kitagawa H, Yasuda Y, Tarasov P E, Nishida K, Gotanda K, Sawai Y, Yangtze River Civilization Program Members. 2003. Asynchronous climate changes in the North Atlantic and Japan during the last termination. Science, 299:688-691
[136]  Nakagawa T, Tarasov P E, Nishida K, Gotanda K, Yasuda Y. 2002. Quantitative pollen-based climate reconstruction in central Japan:Application to surface and Late Quaternary spectra. Quat Sci Rev, 21:2099-2113
[137]  Ni J, Yu G, Harrison S P, Prentice I C. 2010. Palaeovegetation in China during the late Quaternary:Biome reconstructions based on a global scheme of plant functional types. Paleogeogr Paleoclimatol Paleoecol, 289:44-61
[138]  Nielsen A B, Sugita S. 2005. Estimating relevant source area of pollen for small Danish lakes around AD 1800. Holocene, 15:1006-1020
[139]  Nielsen A B. 2004. Modelling pollen sedimentation in Danish lakes at c. AD 1800:An attempt to validate the POLLSCAPE model. J Biogeogr, 31:1693-1709
[140]  Odgaard B V, Rasmussen P. 2000. Origin and temporal development of macro-scale vegetation patterns in the cultural landscape of Denmark. J Ecol, 88:733-748
[141]  Odgaard B V. 1999. Fossil pollen as a record of past biodiversity. J Biogeogr, 26:7-17
[142]  Overpeck J T, Webb T, Prentice I C. 1985. Quantitative interpretation of fossil pollen spectra:Dissimilarity coefficients and the method of modern analogs. Quat Res, 23:87-108
[143]  Parsons R W, Prentice I C. 1981. Statistical approaches to R-values and the pollen-vegetation relationship. Rev Palaeobot Palynology, 32:127-152
[144]  Peck R M. 1973. Pollen budget studies in a small Yorkshire catchment. In:Birks H J B, West R G, eds. Quaternary Plant Ecology. Oxford:Blackwell. 43-60
[145]  Pohl F. 1937. Die Pollenerzeugung der Windbluter. Beihefte zum Botanischen Centralblatt, 56:365-470
[146]  Prentice I C, Berglund B E, Olsson T. 1987. Quantitative forest-composition sensing characteristics of pollen samples from Swedish lakes. Boreas, 16:43-54
[147]  Prentice I C, Guiot J, Huntley B, Jolly D, Cheddadi R. 1996. Reconstructing biomes from palaeoecological data:A general method and its application to European pollen data at 0 and 6 ka. Clim Dyn, 12:185-194
[148]  Prentice I C, Parsons R W. 1983. Maximum likelihood linear calibration of pollen spectra in terms of forest composition. Biometrics, 39:1051-1057
[149]  Prentice I C, Webb T. 1986. Pollen percentages, tree abundances and the Fagerlind effect. J Quat Sci, 1:35-43
[150]  Prentice I C. 1985. Pollen representation, source area, and basin size:toward a unified theory of pollen analysis. Quat Res, 23:76-86
[151]  Prentice I C. 1988. Records of vegetation in time and space:the principles of pollen analysis. In:Huntley B J, Webb T Ⅲ, eds. Vegetation History. Dordrecht:Kluwer Academic Publisher. 17-42
[152]  R?s?nen S, Suutari H, Nielsen A B. 2007. A step further towards quantitative reconstruction of past vegetation in Fennoscandian boreal forests:Pollen productivity estimates for six dominant taxa. Rev Palaeobot Palynol, 146:208-220
[153]  Rousseau D D, Duzer D, Cambon G, Jolly D, Poulsen U, Ferrier J, Schevin P, Gros R. 2003. Long distance transport of pollen to Greenland. Geophys Res Lett, 30:1765
[154]  Schwartz M W. 1989. Predicting tree frequencies from pollen frequency:An attempt to validate the R value method. New Phytol, 112:129-143
[155]  Sepp? H, Birks H J B, Odland A, Poska A, Veski S. 2004. A modern pollen-climate calibration set from northern Europe:developing and testing a tool for palaeoclimatological reconstructions. J Biogeogr, 31:251-267
[156]  Sepp? H, Birks H J B. 2001. July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area:Pollen-based climate reconstructions. Holocene, 11:527-539
[157]  Sepp? H, Hammarlund D, Antonsson K. 2005. Low-frequency and high-frequency changes in temperature and effective humidity during the Holocene in south-central Sweden:implications for atmospheric and oceanic forcings of climate. Clim Dyn, 25:285-297
[158]  Shen J, Liu K B, Tang L Y, Overpeck J T. 2006. Quantitative relationships between modern pollen rain and climate in the Tibetan Plateau. Rev Palaeobot Palynol, 140:61-77
[159]  Shu J W, Wang W M, Jiang L P, Takahara H. 2010. Early Neolithic vegetation history, fire regime and human activity at Kuahuqiao, Lower Yangtze River, East China:New and improved insight. Quat Int, 227:10-21
[160]  Sj?gren P, Van der Knaap W O, Huusko A, van Leeuwen J F N. 2008. Pollen productivity, dispersal, and correction factors for major tree taxa in the Swiss Alps based on pollen-trap results. Rev Palaeobot Palynol, 152:200-210
[161]  Soepboer W, Lotter A F. 2009. Estimating past vegetation openness using pollen-vegetation relationships:A modelling approach. Rev Palaeobot Palynol, 153:102-107
[162]  Soepboer W, Sugita S, Lotter A F, van Leeuwen J F N, van der Knaap W O. 2007. Pollen productivity estimates for quantitative reconstruction of vegetation cover on the Swiss Plateau. Holocene, 17:65-77
[163]  Soepboer W, Vervoort J M, Sugita S, Lotter A F. 2008. Evaluating Swiss pollen productivity estimates using a simulation approach. Veg Hist Archaeobot, 17:497-506
[164]  Stutz S, Prieto A R. 2003. Modern pollen and vegetation relationships in Mar Chiquita coastal lagoon area, southeastern Pampa grasslands, Argentina. Rev Palaeobot Palynol, 126:183-195
[165]  Sugita S, Gaillard M J, Brostr?m A. 1999. Landscape openness and pollen records:A simulation approach. Holocene, 9:409-421
[166]  Sugita S, Hicks S, Sormunen H. 2010. Absolute pollen productivity and pollen-vegetation relationships in northern Finland. J Quat Sci, 25:724-736
[167]  Sugita S. 1993. A model of pollen source area for an entire lake surface. Quat Res, 39:239-244
[168]  Sugita S. 1994. Pollen representation of vegetation in Quaternary sediments:Theory and method in patchy vegetation. J Ecol, 82:881-897
[169]  Sugita S. 2007a. Theory of quantitative reconstruction of vegetation I:Pollen from large sites REVEALS regional vegetation composition. Holocene, 17:229-241
[170]  Sugita S. 2007b. Theory of quantitative reconstruction of vegetation Ⅱ:All you need is LOVE. Holocene, 17:243-257
[171]  Sutton O G. 1953. Micrometeorology. New York:McGraw-Hill. 333
[172]  Tarasov P, Granoszewski W, Bezrukova E, Brewer S, Nita M, Abzaeva A, Oberh?nsli H. 2005. Quantitative reconstruction of the last interglacial vegetation and climate based on the pollen record from Lake Baikal, Russia. Clim Dyn, 25:625-637
[173]  Tauber H. 1965. Differential Pollen Dispersion and the Interpretation of Pollen Diagrams:With A Contribution to the InterprEtation of the Elm Fall. Kobenhaven:Reitzels Forlag. 69
[174]  ter Braak C J F, Juggins S. 1993. Weighted averaging partial least squares regression(WA-PLS):An improved method for reconstructing environmental variables from species assemblages. Hydrobiologia, 269-270:485-502
[175]  ter Braak C J F. 1995. Non-linear methods for multivariate statistical calibration and their use in palaeoecology:A comparison of inverse(k-nearest neighbours, partial least squares and weighted averaging partial least squares) and classical approaches. Chemometr Intell Lab, 28:165-180
[176]  Tian F, Cao X Y, Xu Q H, Li Y C. 2009. A laboratorial study on influence of alkaline and oxidative environment on preservation of Pinus tabulaeformis pollen. Front Earth Sci China, 3:226-230
[177]  Tomescu A M F. 2000. Evaluation of Holocene pollen records from the Romanian Plain. Rev Palaeobot Palynol, 109:219-233
[178]  Twiddle C L, Bunting M J. 2010. Experimental investigations into the preservation of pollen grains:A pilot study of four pollen types. Rev Palaeobot Palynol, 162:621-630
[179]  Wang Y B, Herzschuh U. 2011. Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model. Rev Palaeobot Palynol, 168:31-40
[180]  Webb T Ⅲ, Howe S E, Bradshaw R H W, Heide K M. 1981. Estimating plant abundances from pollen percentages:The use of regression analysis. Rev Palaeobot Palynol, 34:269-300
[181]  Webb T Ⅲ. 1974. Corresponding patterns of pollen and vegetation in Lower Michigan:A comparison of quantitative data. Ecology. 55:17-28
[182]  Wen R L, Xiao J L, Ma Y Z, Feng Z D, Li Y C, Xu Q H. 2013. Pollen-climate transfer functions intended for temperate eastern Asia. Quat Int, 311:3-11
[183]  Williams J W, Shuman B. 2008. Obtaining accurate and precise environmental reconstructions from the modern analog technique and North American surface pollen dataset. Quat Sci Rev, 27:669-687
[184]  Wright H E. 1967. The use of surface samples in Quaternary pollen analysis. Rev Palaeobot Palynol, 2:321-330
[185]  Xu Q H, Li Y C, Bunting M J, Tian F, Liu J S. 2010b. The effects of training set selection on the relationship between pollen assemblages and climate parameters:Implications for reconstructing past climate. Paleogeogr Paleoclimatol Paleoecol, 289:123-133.
[186]  Xu Q H, Li Y C, Tian F, Cao X Y, Yang X L. 2009. Pollen assemblages of tauber traps and surface soil samples in steppe areas of China and their relationships with vegetation and climate. Rev Palaeobot Palynol, 153:86-101
[187]  Xu Q H, Tian F, Bunting M J, Li Y C, Ding W, Cao X Y, He Z G. 2012. Pollen source areas of lakes with inflowing rivers:modern pollen influx data from Lake Baiyangdian, China. Quat Sci Rev, 37:81-91
[188]  Xu Q H, Yang X L, Wu C, Meng L Y, Wang Z H. 1996. Alluvial pollen on the North China Plain. Quat Res, 46:270-280
[189]  Xu Q H, Xiao J L, Li Y C, Tian F, Nakagawa T. 2010a. Pollen-based quantitative reconstruction of Holocene climate changes in the Daihai Lake area, Inner Mongolia, China. J Clim, 23:2856-2868
[190]  Yu G, Prentice I C, Harrison S P, Sun X J. 1998. Pollen-based biome reconstructions for China at 0 and 6000 years. J Biogeogr, 25:1055-1069
[191]  Zhang S R, Xu Q H, Nielsen A B, Chen H, Li Y C, Li M Y, Hun L Y, Li J Y. 2012. Pollen assemblages and their environmental implications in the Qaidam Basin, NW China. Boreas, 41:602-613

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133