Zhang Y, Kong Z C, Zhang H. 2013. Multivariate analysis of modern and fossil pollen data from the central Tianshan Mountains, Xinjiang, NW China. Clim Change, 120:945-957
[2]
Zhao Y, Li F R, Hou Y T, Sun J H, Zhao W W, Tang Y, Li H. 2012a. Surface pollen and its relationships with modern vegetation and climate on the Loess Plateau and surrounding deserts in China. Rev Palaeobot Palynol, 181:47-53
[3]
Zhao Y, Liu H Y, Li F R, Huang X Z, Sun J H, Zhao W W, Herzschuh U, Tang Y. 2012b. Application and limitations of the Artemisia/Chenopodiaceae pollen ratio in arid and semi-arid China. Holocene, 22:1385-1392
[4]
Zhao Y, Yu Z C, Chen F H, Zhang J W, Yang B. 2009. Vegetation response to Holocene climate change in monsoon-influenced region of China. Earth-Sci Rev, 97:242-256
[5]
Zheng Z, Wei J H, Huang K Y, Xu Q H, Lu H Y, Tarasov P, Luo C X, Beaudouin C, Deng Y, Pan A D, Zheng Y W, Luo Y L, Nakagawa T, Li C H, Yang S X, Peng H H, Cheddadi R. 2014. East Asian pollen database:Modern pollen distribution and its quantitative relationship with vegetation and climate. J Biogeogr, 41:1819-1832
Andersen S T. 1970. The relative pollen productivity and pollen representation of north european trees, and correction factors for tree pollen spectra determined by surface pollen analyses from forests. Danmarks Geologiske Undersogelse, Kobenhavn(Ser. Ⅱ), 96:1-99
[50]
Behre K E. 1986. Anthropogenic Indicators in Pollen Diagram. Rotterdam:Balkema. 232
[51]
Birks H H, Birks H J B, Kaland P E, Moe D. 1988. The Cultural Landscape-Past, Present and Future. Cambridge:Cambridge University Press. 521
[52]
Birks H J B. 2003. Quantitative palaeoenvironmental reconstructions from Holocene biological data. In:Mackay A W, Battarbee R W, Birks H J B, Oldfield F, eds. Global Change in the Holocene. London:Hodder Education. 107-123
[53]
Bonny A P. 1978. The effect of pollen recruitment processes on pollen distribution over the sediment surface of a small lake in Cumbria. J Ecol, 66:385-416
[54]
Bonny A P. 1980. Seasonal and annual variation over 5 years in contemporary airborne pollen trapped at a Cumbrian lake. J Ecol, 68:421-441
[55]
Brooks J, Elsik W C. 1974. Chemical oxidation(using ozone) of the spore wall of Lycopodium Clavatum. Grana, 14:85-91
[56]
Bunting M J, Tipping R. 2000. Sorting dross from data:Possible indicators of post-depositional assemblage biasing in archaeological palynology. Human Ecodynamics. Symp Assoc Environmental Archaeol, 19:63-68
[57]
Brostr?m A, Nielsen A B, Gaillard M J, Hjelle K, Mazier F, Binney H, Bunting J, Fyfe R, Meltsov V, Poska V, R?s?nen S, Soepboer W, von Stedingk H, Suutari H, Sugita S. 2008. Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation:A review. Veg Hist Archaeobot, 17:461-478
[58]
Brostr?m A, Sugita S, Gaillard M J. 2004. Pollen productivity estimates for the reconstruction of past vegetation cover in the cultural landscape of southern Sweden. Holocene, 14:368-381
[59]
Brown A G, Carpenter R G, Walling D E. 2007. Monitoring fluvial pollen transport, its relationship to catchment vegetation and implications for palaeoenvironmental studies. Rev Palaeobot Palynol, 147:60-76
[60]
Brush G S, Brush L M. 1972. Transport of pollen in a sediment-laden channel:A laboratory study. Am J Sci, 272:359-381
[61]
Bunting M J, Armitage R, Binney H A, Waller M P. 2005. Estimates of ''relative pollen productivity'' and ''relevant source area of pollen'' for major tree taxa in two Norfolk(UK) woodlands. Holocene, 15:459-465
[62]
Bunting M J, Hjelle K L. 2010. Effect of vegetation data collection strategies on estimates of relevant source area of pollen(RSAP) and relative pollen productivity estimates(relative PPE) for non-arboreal taxa. Veg Hist Archaeobot, 19:365-374
[63]
Bunting M J, Middleton R. 2009. Equifinality and uncertainty in the interpretation of pollen data:The Multiple Scenario Approach to reconstruction of past vegetation mosaics. Holocene, 19:799-803
[64]
Campbell I D, Campbell C. 1994. Pollen preservation:Experimental wet-dry cycles in saline and desalinated sediments. Palynology, 18:5-10
[65]
Campbell I D. 1991. Experimental mechanical destruction of pollen grains. Palynology, 15:29-33
[66]
Carpelan C, Hicks S. 1995. Ancient Saami in Finnish Lapland and their impact on the forest vegetation. In:Butlin R, Roberts N, eds. Ecological Relations in Historical Times. Oxford:Blackwell. 195-205
[67]
Chamberlain A C. 1975. The movement of particles in plant communities. In:Monteith J L, ed. Vegetation and the Atmosphere 1. New York:Academic Press. 155-203
[68]
Chen Y, Ni J, Herzschuh U. 2010. Quantifying modern biomes based on surface pollen data in China. Glob Planet Change, 74:114-131
[69]
Cour P, Zheng Z, Duzer D, Calleja M, Yao Z. 1999. Vegetational and climatic significance of modern pollen rain in northwestern Tibet. Rev Palaeobot Palynol, 104:183-204
[70]
Court-Picon M, Buttler A, Beaulieu J L. 2005. Modern pollen-vegetation relationships in the Champsaur valley(French Alps) and their potential in the interpretation of fossil pollen records of past cultural landscapes. Rev Palaeobot Palynol, 135:13-39
[71]
Crutzen P J, Stoermer E F. 2000. The "Anthropocene". IGBP Newsletter, 41:17-18
[72]
Cushing E J. 1967. Evidence for differential pollen preservation in late Quaternary sediments in Minnesota. Rev Palaeobot Palynol, 4:87-101
[73]
Davis B A S, Brewer S, Stevenson A C, Guiot J. 2003. The temperature of Europe during the Holocene reconstructed from pollen data. Quat Sci Rev, 22:1701-1716
[74]
Davis M B, Brubaker M B. 1973. Differential sedimentation of pollen grains in lakes. Limnol Oceanogr, 18:635-646
[75]
Davis M B, Moeller R E, Ford J. 1984. Sediment focusing and pollen influx. In:Haworth Y, Lund J W G, eds. Lake Sediments and Environmental History. Leicester:University of Leicester Press. 261-293
[76]
Davis M B. 1963. On the theory of pollen analysis. Am J Sci, 261:897-912
[77]
Davis M B. 1968. Pollen grains in lake sediments:Redeposition caused by seasonal water circulation. Science, 162:796-799
[78]
Davis M B. 2000. Palynology after Y2K-understanding the source area of pollen in sediments. Annu Rev Earth Planet Sci, 28:1-18
[79]
DeBusk Jr G H. 1997. The distribution of pollen in the surface sediments of Lake Malawi, Africa, and the transport of pollen in large lakes. Rev Palaeobot Palynol, 97:123-153
[80]
Dimbleby G W. 1985. The Palynology of Archaeological Sites. London:Academic Press. 176
[81]
Elenga H, Peyron O, Bonnefille R, Jolly D, Cheddadi R, Guiot J, Andrieu V, Bottema S, Buchet G, De Beaulieu J L, Hamilton A C, Maley J, Marchant R, Perez-Obiol R, Reille M, Riollet G, Scott L, Straka H, Taylor D, Van Campo E, Vincens A, Laarif F, Jonson H. 2000. Pollen-based biome reconstruction for southern Europe and Africa 18000 yr BP. J Biogeogr, 27:621-634
[82]
El-Moslimany A P. 1990. Ecological significance of common nonarboreal pollen:Examples from drylands of the Middle East. Rev Palaeobot Palynol, 64:343-350
[83]
Erdtman G. 1969. Handbook of Palynology:Morphology, Taxonomy, Ecology. Copenhagen:Munksgaard. 486
[84]
Fagerlind F. 1952. The real signification of pollen diagrams. Bot Notiser, 105:185-224
[85]
Fall P L. 1987. Pollen taphonomy in a canyon stream. Quat Res, 28:393-406
[86]
Fauquette S, Guiot J, Suc J P. 1998. A method for climatic reconstruction of the Mediterranean Pliocene using pollen data. Paleogeogr Paleoclimatol Paleoecol, 144:183-201
[87]
Filipova-Marinova M V, Kvavadze E V, Connor S E, Sj?gren P. 2010. Estimating absolute pollen productivity for some European Tertiary-relict taxa. Veg Hist Archaeobot, 19:351-364
[88]
Firbas F. 1937. Der Pollenanalytysche Nachweis des Getreidebaus. Zeitschrift fur Botanik, 31:447-448
[89]
Fredskild B, Wagner P. 1974. Pollen and fragments of plant tissue in core samples from the Greenland Ice Cap. Boreas, 3:105-108
[90]
Gaillard M J, Birks H J B, Emanuelsson U, Berglund B E. 1992. Modern pollen/land-use relationships as an aid in the reconstruction of past land-uses and cultural landscapes:An example from south Sweden. Veg Hist Archaeobot, 1:3-17
[91]
Iversen J. 1949. The influence of prehistoric man on vegetation. Danmarks geologiske Undersgelse, Series IV, 3:1-25
[92]
Jackson S T, Wong A. 1994. Using forest patchiness to determine pollen source areas of closed-canopy pollen assemblages. J Ecol, 82:88-98
[93]
Gaillard M J, Sugita S, Mazier F, Trondman A K, Brostrom A, Hickler T, Kaplan J O, Kjellstr?m E, Kokfelt U, Kunes P, Lemmen C, Miller P, Olofsson J, Poska A, Rundgren M, Smith B, Strandberg G, Fyfe R, Nielsen A B, Alenius T, Balakauskas L, Barnekow L, Birks H J B, Bjune A, Bjorkman L, Giesecke T, Hjelle K, Kalmina L, Kangur M, Vand Der Knaap W O, Koff T, Lageras P, Latalowa M, Leydet M, Lechterbeck J, Lindbladh M, Odgaard B, Peglar S, Segerstrom U, Von Stedingk H, Sepp? H. 2010. Holocene land-cover reconstructions for studies on land cover-climate feedbacks. Clim Past, 6:483-499
[94]
Guiot J. 1990. Methodology of the last climatic cycle reconstruction in France from pollen data. Paleogeogr Paleoclimatol Paleoecol, 80:49-69
[95]
Hall S A. 1989. Pollen analysis and paleoecology of alluvium. Quat Res, 31:435-438
[96]
Havinga A J. 1964. Investigation into the differential corrosion susceptibility of pollen and spores. Pollen Spores, 6:621-635
[97]
Havinga A J. 1967. Palynology and pollen preservation. Rev Palaeobot Palynol, 2:81-98
[98]
Havinga A J. 1984. A 20-year experimental investigation into the differential corrosion susceptibility of pollen and spores in various soil types. Pollen Spores, 26:541-558
[99]
Herzschuh U, Kürschner H, Battarbee R, Holmes J. 2006. Desert plant pollen production and a 160-year record of vegetation and climate change on the Alashan Plateau, NW China. Veg Hist Archaeobot, 15:181-190
[100]
Herzschuh U, Tarasov P, Wünnemann B, Hartmann K. 2004. Holocene vegetation and climate of the Alashan Plateau, NW China, reconstructed from pollen data. Paleogeogr Paleoclimatol Paleoecol, 211:1-17
[101]
Hicks S, Birks H J B. 1996. Numerical analysis of modern and fossil pollen spectra as a tool for elucidating the nature of fine-scale human activities in boreal areas. Veg Hist Archaeobot, 5:257-272
[102]
Hicks S. 1993. Pollen evidence of localized impact on the vegetation of northernmost Finland by hunter-gatherers. Veg Hist Archaeobot, 2:137-144
[103]
Hicks S. 2001. The use of annual arboreal pollen deposition values for delimiting tree-lines in the landscape and exploring models of pollen dispersal. Rev Palaeobot Palynol, 117:1-29
[104]
Hjelle K L. 1997. Relationships between pollen and plants in human-influenced vegetation types using presence-absence data in western Norway. Rev Palaeobot Palynol, 99:1-16
[105]
Hjelle K L. 1999. Modern pollen assemblages from mown and grazed vegetation types in western Norway. Rev Palaeobot Palynol, 107:55-81
[106]
Holloway R G. 1989. Experimental mechanical pollen degradation and its application to Quaternary age deposits. Texas J Sci, 41:131-145
[107]
Horrocks M, Ogden J. 1994. Modern pollen spectra and vegetation of Mt. Hauhungatahi, central North Island, New Zealand. J Biogeogr, 21:637-649
[108]
Jacobson G L, Bradshaw R H W. 1981. The selection of sites for paleovegetational studies. Quat Res, 16:80-96
[109]
Janssen C R. 1966. Recent pollen spectra from the deciduous and coniferous deciduous forests of Northeastern Minnesota:A study in pollen dispersal. Ecology, 47:804-825
[110]
Jiang W Y, Guo Z T, Sun X J, Wu H B, Chu G Q, Yuan B Y, Hatté C, Guiot J. 2006. Reconstruction of climate and vegetation changes of Lake Bayanchagan(Inner Mongolia):Holocene variability of the East Asian monsoon. Quat Res, 65:411-420
[111]
Johansen S, Hafsten U. 1988. Airborne pollen and spore registrations at Ny-?lesund, Svalbard, summer 1986. Polar Res, 6:11-17
[112]
Knaap Van der W O. 1987. Long-distance transported pollen and spores on Spitsbergen and Jan Mayen. Pollen Spores, 24:449-453
[113]
Koff T. 2001. Pollen influx into Tauber traps in Estonia in 1997-1998. Rev Palaeobot Palynology, 117:53-62
[114]
Kutzbach J, Gallimore R, Harrison S, Behling P, Selin R, Laarif F. 1998. Climate and biome simulations for the past 21000 years. Quat Sci Rev, 17:473-506
[115]
Kvamme M. 1988. Pollen analytical studies of mountain summer-farming in western Norway. In:Birks H H, Birks H J B, Kaland P E, Moe D, eds. The Cultural Landscape—Past, Present and Future. Cambridge:Cambridge University Press. 349-367
[116]
Li C H, Zheng Y F, Yu S Y, Li Y X, Shen H D. 2012. Understanding the ecological background of rice agriculture on the Ningshao Plain during the Neolithic Age:Pollen evidence from a buried paddy field at the Tianluoshan cultural site. Quat Sci Rev, 35:131-138
[117]
Li J Y, Xu Q H, Gaillard M J, Sepp? H, Li Y C, Hun L Y, Li M Y. 2013. Modern pollen and land-use relationships in the Taihang mountains, Hebei province, northern China:A first step towards quantitative reconstruction of human-induced land cover changes. Veg Hist Archaeobot, 22:463-477
[118]
Li J Y, Zhao Y, Xu Q H, Zheng Z, Lu H Y, Luo Y L, Li Y C, Li C H, Sepp? H. 2014. Human influence as a potential source of bias in pollen-based quantitative climate reconstructions. Quat Sci Rev, 99:112-121
[119]
Li M Y, Xu Q H, Zhang S R, Li Y C, Ding W, Li J Y. 2015b. Indicator pollen taxa of human-induced and natural vegetation in Northern China. Holocene, 25:686-701
[120]
Li Y Y, Nielsen A B, Zhao X Q, Shan L J, Wang S Z, Wu J, Zhou L P. 2015a. Pollen production estimates(PPEs) and fall speeds for major tree taxa and relevant source areas of pollen(RSAP) in Changbai Mountain, northeastern China. Rev Palaeobot Palynol, 216:92-100
[121]
Liu H Y, Cui H T, Pott R, Speier M. 1999. The surface pollen of the woodland-steppe ecotone in southeastern Inner Mongolia, China. Rev Palaeobot Palynol, 105:237-250
[122]
Liu H Y, Wang Y, Tian Y H, Zhu J L, Wang H Y. 2006. Climatic and anthropogenic control of surface pollen assemblages in East Asian steppes. Rev Palaeobot Palynol, 138:281-289
[123]
Liu K B. 1988. Quaternary history of the temperate forests of China. Quat Sci Rev, 7:1-20
[124]
Liu K B, Lam N S. 1985. Paleovegetational reconstruction based on modern and fossil pollen data:An application of Discriminant Analysis. Ann Assoc Am Geogr, 75:115-130
[125]
Lowe J J, Walker M J C. 1997. Reconstructing Quaternary Environments. 2nd ed. Londres:Longman. 472
[126]
Lu H Y, Wu N Q, Liu K B, Zhu L P, Yang X D, Yao T D, Wang L, Li Q, Liu X Q, Shen C M, Li X Q, Tong G B, Jiang H. 2011. Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes. Quat Sci Rev, 30:947-966
[127]
Luly J G. 1997. Modern pollen dynamics and surficial sedimentary processes at Lake Tyrrell, semi-arid northwestern Victoria, Australia. Rev Palaeobot Palynol, 97:301-318
[128]
Luo C X, Zheng Z, Tarasov P, Nakagawa T, Pan A D, Xu Q H, Lu H Y, Huang K Y. 2010. A potential of pollen-based climate reconstruction using a modern pollen-climate dataset from arid northern and western China. Rev Palaeobot Palynol, 160:111-125
[129]
Luo C X, Zheng Z, Tarasov P, Pan A D, Huang K Y, Beaudouin C, An F Z. 2009. Characteristics of the modern pollen distribution and their relationship to vegetation in the Xinjiang region, northwestern China. Rev Palaeobot Palynol, 153:282-295
[130]
Lynch E A. 1996. The ability of pollen from small lakes and ponds to sense fine-scale vegetation patterns in the Central Rocky Mountains, USA. Rev Palaeobot Palynol, 94:197-210
[131]
Mazier F, Nielsen A B, Brostr?m A, Sugita S, Hicks S. 2012. Signals of tree volume and temperature in a high-resolution record of pollen accumulation rates in northern Finland. J Quat Sci, 27:564-574
[132]
McAndrews J H. 1984. Pollen analysis of the 1973 ice core from Devon Island Glacier, Canada. Quat Res, 22:68-76
[133]
Minckley T A, Bartlein P J, Whitlock C, Shuman B N, Williams J W, Davis O K. 2008. Associations among modern pollen, vegetation, and climate in western North America. Quat Sci Rev, 27:1962-1991
[134]
Mosbrugger V, Utescher T. 1997. The coexistence approach—A method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Paleogeogr Paleoclimatol Paleoecol, 134:61-86
[135]
Nakagawa T, Kitagawa H, Yasuda Y, Tarasov P E, Nishida K, Gotanda K, Sawai Y, Yangtze River Civilization Program Members. 2003. Asynchronous climate changes in the North Atlantic and Japan during the last termination. Science, 299:688-691
[136]
Nakagawa T, Tarasov P E, Nishida K, Gotanda K, Yasuda Y. 2002. Quantitative pollen-based climate reconstruction in central Japan:Application to surface and Late Quaternary spectra. Quat Sci Rev, 21:2099-2113
[137]
Ni J, Yu G, Harrison S P, Prentice I C. 2010. Palaeovegetation in China during the late Quaternary:Biome reconstructions based on a global scheme of plant functional types. Paleogeogr Paleoclimatol Paleoecol, 289:44-61
[138]
Nielsen A B, Sugita S. 2005. Estimating relevant source area of pollen for small Danish lakes around AD 1800. Holocene, 15:1006-1020
[139]
Nielsen A B. 2004. Modelling pollen sedimentation in Danish lakes at c. AD 1800:An attempt to validate the POLLSCAPE model. J Biogeogr, 31:1693-1709
[140]
Odgaard B V, Rasmussen P. 2000. Origin and temporal development of macro-scale vegetation patterns in the cultural landscape of Denmark. J Ecol, 88:733-748
[141]
Odgaard B V. 1999. Fossil pollen as a record of past biodiversity. J Biogeogr, 26:7-17
[142]
Overpeck J T, Webb T, Prentice I C. 1985. Quantitative interpretation of fossil pollen spectra:Dissimilarity coefficients and the method of modern analogs. Quat Res, 23:87-108
[143]
Parsons R W, Prentice I C. 1981. Statistical approaches to R-values and the pollen-vegetation relationship. Rev Palaeobot Palynology, 32:127-152
[144]
Peck R M. 1973. Pollen budget studies in a small Yorkshire catchment. In:Birks H J B, West R G, eds. Quaternary Plant Ecology. Oxford:Blackwell. 43-60
[145]
Pohl F. 1937. Die Pollenerzeugung der Windbluter. Beihefte zum Botanischen Centralblatt, 56:365-470
[146]
Prentice I C, Berglund B E, Olsson T. 1987. Quantitative forest-composition sensing characteristics of pollen samples from Swedish lakes. Boreas, 16:43-54
[147]
Prentice I C, Guiot J, Huntley B, Jolly D, Cheddadi R. 1996. Reconstructing biomes from palaeoecological data:A general method and its application to European pollen data at 0 and 6 ka. Clim Dyn, 12:185-194
[148]
Prentice I C, Parsons R W. 1983. Maximum likelihood linear calibration of pollen spectra in terms of forest composition. Biometrics, 39:1051-1057
[149]
Prentice I C, Webb T. 1986. Pollen percentages, tree abundances and the Fagerlind effect. J Quat Sci, 1:35-43
[150]
Prentice I C. 1985. Pollen representation, source area, and basin size:toward a unified theory of pollen analysis. Quat Res, 23:76-86
[151]
Prentice I C. 1988. Records of vegetation in time and space:the principles of pollen analysis. In:Huntley B J, Webb T Ⅲ, eds. Vegetation History. Dordrecht:Kluwer Academic Publisher. 17-42
[152]
R?s?nen S, Suutari H, Nielsen A B. 2007. A step further towards quantitative reconstruction of past vegetation in Fennoscandian boreal forests:Pollen productivity estimates for six dominant taxa. Rev Palaeobot Palynol, 146:208-220
[153]
Rousseau D D, Duzer D, Cambon G, Jolly D, Poulsen U, Ferrier J, Schevin P, Gros R. 2003. Long distance transport of pollen to Greenland. Geophys Res Lett, 30:1765
[154]
Schwartz M W. 1989. Predicting tree frequencies from pollen frequency:An attempt to validate the R value method. New Phytol, 112:129-143
[155]
Sepp? H, Birks H J B, Odland A, Poska A, Veski S. 2004. A modern pollen-climate calibration set from northern Europe:developing and testing a tool for palaeoclimatological reconstructions. J Biogeogr, 31:251-267
[156]
Sepp? H, Birks H J B. 2001. July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area:Pollen-based climate reconstructions. Holocene, 11:527-539
[157]
Sepp? H, Hammarlund D, Antonsson K. 2005. Low-frequency and high-frequency changes in temperature and effective humidity during the Holocene in south-central Sweden:implications for atmospheric and oceanic forcings of climate. Clim Dyn, 25:285-297
[158]
Shen J, Liu K B, Tang L Y, Overpeck J T. 2006. Quantitative relationships between modern pollen rain and climate in the Tibetan Plateau. Rev Palaeobot Palynol, 140:61-77
[159]
Shu J W, Wang W M, Jiang L P, Takahara H. 2010. Early Neolithic vegetation history, fire regime and human activity at Kuahuqiao, Lower Yangtze River, East China:New and improved insight. Quat Int, 227:10-21
[160]
Sj?gren P, Van der Knaap W O, Huusko A, van Leeuwen J F N. 2008. Pollen productivity, dispersal, and correction factors for major tree taxa in the Swiss Alps based on pollen-trap results. Rev Palaeobot Palynol, 152:200-210
[161]
Soepboer W, Lotter A F. 2009. Estimating past vegetation openness using pollen-vegetation relationships:A modelling approach. Rev Palaeobot Palynol, 153:102-107
[162]
Soepboer W, Sugita S, Lotter A F, van Leeuwen J F N, van der Knaap W O. 2007. Pollen productivity estimates for quantitative reconstruction of vegetation cover on the Swiss Plateau. Holocene, 17:65-77
[163]
Soepboer W, Vervoort J M, Sugita S, Lotter A F. 2008. Evaluating Swiss pollen productivity estimates using a simulation approach. Veg Hist Archaeobot, 17:497-506
[164]
Stutz S, Prieto A R. 2003. Modern pollen and vegetation relationships in Mar Chiquita coastal lagoon area, southeastern Pampa grasslands, Argentina. Rev Palaeobot Palynol, 126:183-195
[165]
Sugita S, Gaillard M J, Brostr?m A. 1999. Landscape openness and pollen records:A simulation approach. Holocene, 9:409-421
[166]
Sugita S, Hicks S, Sormunen H. 2010. Absolute pollen productivity and pollen-vegetation relationships in northern Finland. J Quat Sci, 25:724-736
[167]
Sugita S. 1993. A model of pollen source area for an entire lake surface. Quat Res, 39:239-244
[168]
Sugita S. 1994. Pollen representation of vegetation in Quaternary sediments:Theory and method in patchy vegetation. J Ecol, 82:881-897
[169]
Sugita S. 2007a. Theory of quantitative reconstruction of vegetation I:Pollen from large sites REVEALS regional vegetation composition. Holocene, 17:229-241
[170]
Sugita S. 2007b. Theory of quantitative reconstruction of vegetation Ⅱ:All you need is LOVE. Holocene, 17:243-257
[171]
Sutton O G. 1953. Micrometeorology. New York:McGraw-Hill. 333
[172]
Tarasov P, Granoszewski W, Bezrukova E, Brewer S, Nita M, Abzaeva A, Oberh?nsli H. 2005. Quantitative reconstruction of the last interglacial vegetation and climate based on the pollen record from Lake Baikal, Russia. Clim Dyn, 25:625-637
[173]
Tauber H. 1965. Differential Pollen Dispersion and the Interpretation of Pollen Diagrams:With A Contribution to the InterprEtation of the Elm Fall. Kobenhaven:Reitzels Forlag. 69
[174]
ter Braak C J F, Juggins S. 1993. Weighted averaging partial least squares regression(WA-PLS):An improved method for reconstructing environmental variables from species assemblages. Hydrobiologia, 269-270:485-502
[175]
ter Braak C J F. 1995. Non-linear methods for multivariate statistical calibration and their use in palaeoecology:A comparison of inverse(k-nearest neighbours, partial least squares and weighted averaging partial least squares) and classical approaches. Chemometr Intell Lab, 28:165-180
[176]
Tian F, Cao X Y, Xu Q H, Li Y C. 2009. A laboratorial study on influence of alkaline and oxidative environment on preservation of Pinus tabulaeformis pollen. Front Earth Sci China, 3:226-230
[177]
Tomescu A M F. 2000. Evaluation of Holocene pollen records from the Romanian Plain. Rev Palaeobot Palynol, 109:219-233
[178]
Twiddle C L, Bunting M J. 2010. Experimental investigations into the preservation of pollen grains:A pilot study of four pollen types. Rev Palaeobot Palynol, 162:621-630
[179]
Wang Y B, Herzschuh U. 2011. Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model. Rev Palaeobot Palynol, 168:31-40
[180]
Webb T Ⅲ, Howe S E, Bradshaw R H W, Heide K M. 1981. Estimating plant abundances from pollen percentages:The use of regression analysis. Rev Palaeobot Palynol, 34:269-300
[181]
Webb T Ⅲ. 1974. Corresponding patterns of pollen and vegetation in Lower Michigan:A comparison of quantitative data. Ecology. 55:17-28
[182]
Wen R L, Xiao J L, Ma Y Z, Feng Z D, Li Y C, Xu Q H. 2013. Pollen-climate transfer functions intended for temperate eastern Asia. Quat Int, 311:3-11
[183]
Williams J W, Shuman B. 2008. Obtaining accurate and precise environmental reconstructions from the modern analog technique and North American surface pollen dataset. Quat Sci Rev, 27:669-687
[184]
Wright H E. 1967. The use of surface samples in Quaternary pollen analysis. Rev Palaeobot Palynol, 2:321-330
[185]
Xu Q H, Li Y C, Bunting M J, Tian F, Liu J S. 2010b. The effects of training set selection on the relationship between pollen assemblages and climate parameters:Implications for reconstructing past climate. Paleogeogr Paleoclimatol Paleoecol, 289:123-133.
[186]
Xu Q H, Li Y C, Tian F, Cao X Y, Yang X L. 2009. Pollen assemblages of tauber traps and surface soil samples in steppe areas of China and their relationships with vegetation and climate. Rev Palaeobot Palynol, 153:86-101
[187]
Xu Q H, Tian F, Bunting M J, Li Y C, Ding W, Cao X Y, He Z G. 2012. Pollen source areas of lakes with inflowing rivers:modern pollen influx data from Lake Baiyangdian, China. Quat Sci Rev, 37:81-91
[188]
Xu Q H, Yang X L, Wu C, Meng L Y, Wang Z H. 1996. Alluvial pollen on the North China Plain. Quat Res, 46:270-280
[189]
Xu Q H, Xiao J L, Li Y C, Tian F, Nakagawa T. 2010a. Pollen-based quantitative reconstruction of Holocene climate changes in the Daihai Lake area, Inner Mongolia, China. J Clim, 23:2856-2868
[190]
Yu G, Prentice I C, Harrison S P, Sun X J. 1998. Pollen-based biome reconstructions for China at 0 and 6000 years. J Biogeogr, 25:1055-1069
[191]
Zhang S R, Xu Q H, Nielsen A B, Chen H, Li Y C, Li M Y, Hun L Y, Li J Y. 2012. Pollen assemblages and their environmental implications in the Qaidam Basin, NW China. Boreas, 41:602-613