全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

锶同位素(87Sr/86Sr)生物地层框架投影方法及其应用——以二叠系乐平统为例

DOI: 10.1007/s11430-015-5134-2, PP. 1781-1790

Keywords: 二叠系,乐平统,锶同位素比值,(87Sr/86Sr),牙形刺化石带,海相碳酸盐岩,稳定同位素,化学地层学

Full-Text   Cite this paper   Add to My Lib

Abstract:

?晚二叠世是地球历史中海水锶同位素比值(87Sr/86Sr)上升速率最快的时期之一,但其具体的演化速率和规律仍有很大争议.本文认为传统的锶同位素地层学研究争议的根本问题是不同学者选择的时间框架不一致,即地史上锶同位素(87Sr/86Sr)的演化特征受投影时间轴框架(如地层厚度或绝对年龄)、沉积速率、界线研究程度以及测量方法等的影响.综合不同研究者对乐平世地层87Sr/86Sr的资料,以有时间跨度控制的牙形刺化石带为时间投影框架,重新建立该时期全球海洋87Sr/86Sr的演化规律,并获得以下新认识:(1)化石带与87Sr/86Sr直接对应,可更准确反映87Sr/86Sr演化特征;(2)可用于缺失化石资料的海相碳酸盐岩地层研究;(3)可用于不同沉积速率剖面及不同盆地间地层学研究;(4)87Sr/86Sr分析结果与样品矿物组成和分析方法有关;(5)晚二叠世海洋87Sr/86Sr上升速率为5.4×10-5/Ma或略低;(6)87Sr/86Sr数值与地层年龄关系的计算公式:Dpro=259-(RS-0.70695)/5.4×10-5Ma.

References

[1]  杜远生, 童金南. 1998. 古生物地史学概论. 武汉:中国地质大学出版社. 1-212
[2]  胡作维, 黄思静, 刘丽红, 等. 2010. 四川东部华蓥山海相二叠/三叠系界线附近的锶同位素组成. 地球学报, 31:853-859
[3]  黄成刚, 黄思静, 吴素娟, 等. 2006. 100 Ma来海水的锶同位素组成演化及主要控制因素. 地球科学与环境学报, 28:19-24
[4]  黄思静, 石和, 刘洁, 等. 2001a. 锶同位素地层学研究进展. 地球科学进展, 16:194-200
[5]  黄思静, 石和, 张萌, 等. 2001b. 上扬子石炭-二叠纪海相碳酸盐的锶同位素演化与全球海平面变化. 沉积学报, 19:481-487
[6]  黄思静, 石和, 张萌, 等. 2002. 锶同位素地层学在碎屑岩成岩研究中的应用. 沉积学报, 20:359-366
[7]  Liu X C, Wang W, Shen S Z, et al. 2013. Late Guadalupian to Lopingian(Permian) carbon and strontium isotopic chemostratigraphy in the Abadeh section, central Iran. Gondwana Res, 24:222-232
[8]  Martin E E, Macdougall J D. 1995. Sr and Nd isotopes at the Permian/Triassic boundary:A record of climate change. Chem Geol, 125:73-99
[9]  McArthur J M, Kennedy W J, Gale A S, et al. 1992. Strontium-isotope stratigraphy in the Late Cretaceous, intercontinental correlation of the Campanian/Maastrichtian boundary. Terr Nova, 4:385-393
[10]  McArthur J M, Howarth R J, Bailey T R. 2001. Strontium isotope stratigraphy LOWESS version 3:Best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age. J Geol, 109:155-170
[11]  McArthur J M, Howarth R J, Shields G A. 2012. Strontium isotope stratigraphy. In:Gradstein F M, Ogg J G, Schmitz M D, et al., eds. The Geologic Time Scale 2012. Oxford:Elsevier Science. 127-144
[12]  Nishioka S, Arakawa Y, Kobayashi Y. 1991. Strontium isotope profile of Carboniferous-Permian Akiyoshi limestone in southwest Japan. Geochem J, 25:137-146
[13]  Palmer M R, Elderfield H. 1985. Sr isotope composition of sea water over the past 75 Myr. Nature, 314:526-528
[14]  Palmer M R, Edmond J M. 1989. The strontium isotope budget of the modern ocean. Earth Planet Sci Lett, 92:11-26
[15]  Raup D M, Sepkoski J J. 1982. Mass extinctions in the marine fossil record. Science, 215:1501-1503
[16]  Reichow M K, Pringle M S, Al''Mukhamedov A I, et al. 2009. The timing and extent of the eruption of the Siberian Traps large igneous province. Earth Planet Sci Lett, 277:9-20
[17]  Shen S Z, Shi G R. 2002. Paleobiogeographical extinction patterns of Permian brachiopods in the Asian-western Pacific region. Paleobiology, 28:449-463
[18]  Shen S Z, Xie J F, Zhang H, et al. 2009. Roadian-Wordian(Guadalupian, Middle Permian) global palaeobiogeography of brachiopods. Glob Planet Change, 65:166-181
[19]  Shen S Z, Henderson C M, Bowring S A, et al. 2010a. High-resolution Lopingian(Late Permian) timescale of South China. Geol J, 45:122-134
[20]  Shen S Z, Mei S L. 2010b. Lopingian(Late Permian) high-resolution conodont biostratigraphy in Iran with comparison to South China zonation. Geol J, 45:135-161
[21]  Shen S Z, Crowley J L, Wang Y, et al. 2011. Calibrating the end-Permian mass extinction. Science, 334:1367-1372
[22]  Sobolev S V, Sobolev A V, Kuzmin D V, et al. 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature, 477:312-316
[23]  Toutin-Morin N, Freytet P, Cussey R. 1992. Continental Permian carbonates of western Europe and northern Africa. Carbonates Evaporites, 7:88-93
[24]  Veizer J, Ala D, Azmy K, et al. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol, 161:59-88
[25]  Wang W, Kano A, Okumura T, et al. 2007. Isotopic chemostratigraphy of the microbialite-bearing Permian-Triassic boundary section in the Zagros Mountains, Iran. Chem Geol, 244:708-714
[26]  南君亚, 刘育燕. 2004. 浙江煤山二叠-三叠系界线剖面有机和无机碳同位素变化与古环境. 地球化学, 33:9-19
[27]  石和, 黄思静, 沈立成, 等. 2002. 川黔上古生界锶同位素演化曲线的地层学意义. 地层学杂志, 26:106-110
[28]  田景春, 曾允孚. 1995. 中国南方二叠纪古海洋锶同位素演化. 沉积学报, 13:125-130
[29]  王文倩, 王伟, 冯先翠, 等. 2014. 锶同位素地层学在海相地层划分和对比中的应用——以二叠纪乐平世海相碳酸盐岩地层为例. 地层学杂志, 38:430-444
[30]  肖加飞, 李荣西, 王兴理, 等. 2009. 大贵州滩二叠系-三叠系界线附近锶同位素组成特征. 地质论评, 55:647-652
[31]  Azmy K, Poty E, Brand U. 2009. High-resolution isotope stratigraphy of the Devonian-Carboniferous boundary in the Namur-Dinant Basin, Belgium. Sediment Geol, 216:117-124
[32]  Bailey T R, McArthur J M, Prince H, et al. 2000. Dissolution methods for strontium isotope stratigraphy:Whole rock analysis. Chem Geol, 167:313-319
[33]  Burke W H, Denison R E, Hetherington E A, et al. 1982. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 10:516-519
[34]  Cao C Q, Love G D, Lindsay E H, et al. 2009. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet Sci Lett, 281:188-201
[35]  Chen Z Q, Tong J N, Kaiho K, et al. 2007. Onset of biotic and environmental recovery from the end-Permian mass extinction within 1-2 million years:A case study of the Lower Triassic of the Lower Triassic of the Meishan section, South China. Paleogeogr Paleoclimatol Paleoecol, 252:176-187
[36]  Erwin D H. 1994. The Permo-Triassic extinction. Nature, 367:231-236
[37]  Erwin D H. 2008. Extinction:How Life on Earth Nearly Ended 250 Million Years Ago. New Jersey:Princeton University Press. 1-320
[38]  Geldern R, Joachimski M M, Day J, et al. 2006. Carbon, oxygen and strontium isotope records of Devonian brachiopod shell calcite. Paleogeogr Paleoclimatol Paleoecol, 240:47-67
[39]  Heydari E, Wade W J, Hassanzadeh J. 2001. Diagenetic origin of carbon and oxygen isotope compositions of Permian-Triassic boundary strata. Sediment Geol, 191-197
[40]  Heydari E, Hassanzadeh J, Wade W J, et al. 2003. Permian-Triassic boundary interval in the Abadeh section of Iran with implications for mass extinction:Part 1-Sedimentology. Paleogeogr Paleoclimatol Paleoecol, 193:405-423
[41]  Jan I U, Stephenson M H, Khan F R. 2009. Palynostratigraphic correlation of the Sardhai Formation(Permian) of Pakistan. Rev Palaeobot Palynology, 158:72-82
[42]  Jin Y G, Wang Y, Wang W, et al. 2000. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science, 289:432-436
[43]  Kamo S L, Czamanske G K, Amelin Y, et al. 2003. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth Planet Sci Lett, 214:75-91
[44]  Kashiwagi H, Ogawa Y, Shikazono N. 2008. Relationship between weathering, mountain uplift, and climate during the Cenozoic as deduced from the global carbon-strontium cycle model. Paleogeogr Paleoclimatol Paleoecol, 270:139-149
[45]  Korte C, Kozur H W, Bruckschen P, et al. 2003. Strontium isotope evolution of Late Permian and Triassic seawater. Geochim Cosmochim Acta, 67:47-62
[46]  Korte C, Kozur H W, Joachimski M M, et al. 2004. Carbon, sulfur, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran. Int J Earth Sci, 93:565-581
[47]  Korte C, Jasper T, Kozur H W, et al. 2006. 87Sr/86Sr record of Permian seawater. Paleogeogr Paleoclimatol Paleoecol, 240:89-107
[48]  Korte C, Pande P, Kalia P, et al. 2010. Massive volcanism at the Permian-Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere. J Asian Earth Sci, 37:293-311
[49]  Kozur H W. 2003. Integrated ammonoid, conodont and radiolarian zonation of the Triassic and some remarks to Stage/Substage subdivision and the numeric age of the Triassic stages. Albertiana, 28:57-74
[50]  Li D, Ling H F, Shields-Zhou G A, et al. 2013. Carbon and strontium isotope evolution of seawater across the Ediacaran-Cambrian transition:Evidence from the Xiaotan section, NE Yunnan, South China. Precambrian Res, 225:128-147
[51]  Wickman F E. 1948. Isotope ratios:A clue to the age of certain marine sediments. J Geol, 56:61-66
[52]  Williamson T, Henderson R A, Price G D, et al. 2012. Strontium-isotope stratigraphy of the Lower Cretaceous of Australia. Cretac Res, 36:24-36
[53]  Wooden J L, Czamanske G K, Fedorenko V A, et al. 1993. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril''sk area, Siberia. Geochim Cosmochim Acta, 57:3677-3704
[54]  Zhao K D, Jiang S Y, Yang S Y, et al. 2012. Mineral chemistry, trace elements and Sr-Nd-Hf isotope geochemistry and petrogensis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone, South China. Gondwana Res, 22:310-324
[55]  Zhao L S, Tong J N, Sun Z M, et al. 2008. A detailed Lower Triassic conodont biostratigraphy and its implications for the GSSP candidate of the Induan-Olenekian boundary in Chaohu, Anhui Province. Prog Nat Sci, 18:79-90
[56]  Ziegler A M, Hulver M L, Bowley D B. 1997. Permian world topography and climate. In:Martini I P. ed. Late Glacial and Postglacial Environmental Changes:Quaternary, Carboniferous-Permian, and Proterozoic. Oxford:Oxford University Press. 111-146
[57]  黄思静, 卿海若, 胡作维, 等. 2008a. 川东三叠系飞仙关组碳酸盐岩的阴极发光特征与成岩作用. 地球科学—中国地质大学学报, 33:26-34
[58]  黄思静, Qing H R, 黄培培, 等. 2008b. 晚二叠世-早三叠世海水的锶同位素组成与演化—基于重庆中梁山海相碳酸盐的研究结果. 中国科学 D辑:地球科学, 38:273-283
[59]  卢武长, 崔秉荃, 杨绍全, 等. 1992. 二叠纪海相碳酸盐的锶同位素演化及其意义. 矿物岩石, 12:80-87
[60]  梅仕龙, 朱自力, 史晓颖, 等. 1999. 广西中部二叠系乐平统层序地层研究. 现代地质, 13:11-18

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133