全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

钼海洋地球化学与古海洋化学重建

DOI: 10.1007/s11430-015-5177-4, PP. 1649-1660

Keywords: Mo富集,Mo同位素分馏,Mo同位素质量,平衡模型,古海洋化学

Full-Text   Cite this paper   Add to My Lib

Abstract:

?近年来,钼(Mo)元素有关的地球化学指标在刻画古海洋化学环境上发挥越来越重要的作用.本文系统介绍了Mo在海洋地球化学循环过程中的富集和同位素分馏基本原理及其在古海洋化学重建中的具体应用.综述表明:铁锰氧化物/氢氧化物的吸附和H2S的硫代作用是Mo在沉积物中富集的主要途径.因此,缺氧沉积物中Mo的富集通常反映了水柱和/或沉积物孔隙水中H2S的出现.硫化沉积物中Mo富集程度除与水柱或孔隙水中硫化程度有关外,还与海洋Mo库的大小有关.基于上述原理,对海洋硫化沉积物中Mo及Mo/TOC的地史演化重建表明:海洋Mo库演化与大气和海洋的演化历程具有很好的对应关系,表现出与地球两次大气-海洋氧化事件对应的阶段性演化特征.Mo同位素分馏原理及应用表明:强硫化沉积物可以有效记录沉积时海水的Mo同位素组成,而其他过程,包括锰铁氧化物/氢氧化物的吸附作用、低浓度H2S作用等均会导致沉积物不同程度富集轻Mo同位素.成岩作用可能会导致上述Mo富集和同位素分馏过程复杂化.在对沉积时海水的Mo同位素组成和不同水体环境下输出的Mo同位素组成进行必要约束的前提下,应用Mo同位素质量平衡模型可以对地质历史时期海洋总体的氧化还原状态进行定量重建.综上,Mo对局部和全球海洋的氧化还原状态变化敏感,可以有效应用于古海洋不同尺度的水体化学重建;但由于海洋化学过程的复杂性,在应用Mo地球化学指标进行古海洋化学重建时需要注意可能的多地球化学过程叠加的干扰.

References

[1]  Algeo T J. 2004. Can marine anoxic events draw down the trace element inventory of seawater? Geology, 32:1057-1060
[2]  Algeo T J, Lyons T W. 2006. Mo-total organic carbon covariation in modern anoxic marine environments:Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21, doi:10.1029/2004pa001112
[3]  Algeo T J, Maynard J B. 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol, 206:289-318
[4]  Anbar A D. 2004. Molybdenum stable isotopes:Observations, interpretations and directions. Rev Mineral Geochem, 55:429-454
[5]  Anbar A D, Knoll A H. 2002. Proterozoic ocean chemistry and evolution:A bioinorganic bridge? Science, 297:1137-1142
[6]  Anbar A D, Rouxel O. 2007. Metal stable isotopes in paleoceanography. Annu Rev Earth Planet Sci, 35:717-746
[7]  Archer C, Vance D. 2008. The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans. Nat Geosci, 1:597-600
[8]  Arnold G L, Anbar A D, Barling J, Lyons T W. 2004. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science, 304:87-90
[9]  Arnold G L, Lyons T W, Gordon G W, Anbar A D. 2012. Extreme change in sulfide concentrations in the Black Sea during the Little Ice Age reconstructed using molybdenum isotopes. Geology, 40:595-598
[10]  Baldwin G J, N?gler T F, Greber N D, Turner E C, Kamber B S. 2013. Mo isotopic composition of the mid-Neoproterozoic ocean:An iron formation perspective. Precambrian Res, 230:168-178
[11]  Barling J, Anbar A D. 2004. Molybdenum isotope fractionation during adsorption by manganese oxides. Earth Planet Sci Lett, 217:315-329
[12]  Barling J, Arnold G L, Anbar A D. 2001. Natural mass-dependent variations in the isotopic composition of molybdenum. Earth Planet Sci Lett, 193:447-457
[13]  Bekker A, Holland H D, Wang P L, Rumble D, Stein H J, Hannah J L, Coetzee L L, Beukes N J. 2004. Dating the rise of atmospheric oxygen. Nature, 427:117-120
[14]  Brocks J J. 2005. Building the biomarker tree of life. Rev Mineral Geochem, 59:233-258
[15]  Brumsack H J. 1989. Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea. Int J Earth Sci Geol Rundschau, 78:851-882
[16]  Canfield D E. 1998. A new model for Proterozoic ocean chemistry. Nature, 396:450-453
[17]  Canfield D E. 2005. The early history of atmospheric oxygen:Homage to Robert M. Garrels. Annu Rev Earth Planet Sci, 33:1-36
[18]  Canfield D E, Ngombi-Pemba L, Hammarlund E U, Bengtson S, Chaussidon M, Gauthier-Lafaye F, Meunier A, Riboulleau A, Rollion-Bard C, Rouxel O, Asael D, Pierson-Wickmann A C, Albani A E. 2013. Oxygen dynamics in the aftermath of the Great Oxidation of Earth''s atmosphere. Proc Natl Acad Sci USA, 110:16736-16741
[19]  Canfield D E, Thamdrup B. 2009. Towards a consistent classification scheme for geochemical environments, or, why we wish the term ''suboxic'' would go away. Geobiology, 7:385-92
[20]  Catling D C, Zahnle K J, McKay C P. 2001. Biogenic methane, hydrogen escape, and the irreversible oxidation of early earth. Science, 293:839-843
[21]  Chen X, Ling H F, Vance D, Shields-Zhou G A, Zhu M, Poulton S W, Och L M, Jiang S Y, Li D, Cremonese L, Archer C. 2015. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nat Commun, 6, doi:10.1038/ncomms8142
[22]  Collier R W. 1985. Molybdenum in the northeast Pacific Ocean. Limnol Oceanogr, 30:1351-1354
[23]  Dahl T W, Anbar A D, Gordon G W, Rosing M T, Frei R, Canfield D E. 2010a. The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland. Geochim Cosmochim Acta, 74:144-163
[24]  Dahl T W, Canfield D E, Rosing M T, Frei R E, Gordon G W, Knoll A H, Anbar A D. 2011. Molybdenum evidence for expansive sulfidic water masses in ~750 Ma oceans. Earth Planet Sci Lett, 311:264-274
[25]  Kasting J F. 2001. Earth history. The rise of atmospheric oxygen. Science, 293:819-820
[26]  Kendall B, Creaser R A, Gordon G W, Anbar A D. 2009. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia. Geochim Cosmochim Acta, 73:2534-2558
[27]  Kendall B, Gordon G W, Poulton S W, Anbar A D. 2011. Molybdenum isotope constraints on the extent of late Paleoproterozoic ocean euxinia. Earth Planet Sci Lett, 307:450-460
[28]  Kendall B, Komiya T, Lyons T W, Bates S M, Gordon G W, Romaniello S J, Jiang G Q, Creaser R A, Xiao S H, McFadden K, Sawaki Y, Tahata M, Shu D G, Han J, Li Y, Chu X L, Anbar A D. 2015. Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period. Geochim Cosmochim Acta, 156:173-193
[29]  Kowalski N, Dellwig O, Beck M, Grawe U, Neubert N, Nagler T F, Badewien T H, Brumsack H J, van Beusekom J E E, Bottcher M E. 2013. Pelagic molybdenum concentration anomalies and the impact of sediment resuspension on the molybdenum budget in two tidal systems of the North Sea. Geochim Cosmochim Acta, 119:198-211
[30]  Kump L R. 2008. The rise of atmospheric oxygen. Nature, 451:277-278
[31]  Kump L R, Seyfried W E. 2005. Hydrothermal Fe fluxes during the Precambrian:Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet Sci Lett, 235:654-662
[32]  Kurzweil F, Wille M, Schoenberg R, Taubald H, Van Kranendonk M J. 2015. Continuously increasing δ98Mo values in Neoarchean black shales and iron formations from the Hamersley Basin. Geochim Cosmochim Acta, 164:523-542
[33]  Lehmann B, N?gler T F, Holland H D, Wille M, Mao J, Pan J, Ma D, Dulski P. 2007. Highly metalliferous carbonaceous shale and Early Cambrian seawater. Geology, 35:403-406
[34]  Li C, Love G D, Lyons T W, Fike D A, Sessions A L, Chu X. 2010. A stratified redox model for the Ediacaran ocean. Science, 328:80-83
[35]  Morford J L, Russell A D, Emerson S. 2001. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC. Mar Geol, 174:355-369
[36]  N?gler T F, Neubert N, B?ttcher M E, Dellwig O, Schnetger B. 2011. Molybdenum isotope fractionation in pelagic euxinia:Evidence from the modern Black and Baltic Seas. Chem Geol, 289:1-11
[37]  Nameroff T J, Balistrieri L S, Murray J W. 2002. Suboxic trace metal geochemistry in the eastern tropical North Pacific. Geochim Cosmochim Acta, 66:1139-1158
[38]  Neubert N, Heri A R, Voegelin A R, N?gler T F, Schlunegger F, Villa I M. 2011. The molybdenum isotopic composition in river water:Constraints from small catchments. Earth Planet Sci Lett, 304:180-190
[39]  Neubert N, N?gler T F, B?ttcher M E. 2008. Sulfidity controls molybdenum isotope fractionation into euxinic sediments:Evidence from the modern Black Sea. Geology, 36:775-778
[40]  Och L M, Shields-Zhou G A. 2012. The Neoproterozoic oxygenation event:Environmental perturbations and biogeochemical cycling. Earth-Sci Rev, 110:26-57
[41]  Pearce C R, Cohen A S, Coe A L, Burton K W. 2008. Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic. Geology, 36:231-234
[42]  Planavsky N J, Asael D, Hofmann A, Reinhard C T, Lalonde S V, Knudsen A, Wang X, Ossa Ossa F, Pecoits E, Smith A J B, Beukes N J, Bekker A, Johnson T M, Konhauser K O, Lyons T W, Rouxel O J. 2014a. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat Geosci, 7:283-286
[43]  Planavsky N J, Reinhard C T, Wang X, Thomson D, McGoldrick P, Rainbird R H, Johnson T, Fischer W W, Lyons T W. 2014b. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346:635-638
[44]  Poulson R L, McManus J, Severmann S, Berelson W M. 2009. Molybdenum behavior during early diagenesis:Insights from Mo isotopes. Geochem Geophys Geosyst, 10, doi:10.1029/2008GC002180
[45]  Poulson R L, Siebert C, McManus J, Berelson W M. 2006. Authigenic molybdenum isotope signatures in marine sediments. Geology, 34:617-620
[46]  Poulton S W, Fralick P W, Canfield D E. 2010. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat Geosci, 3:486-490
[47]  Proemse B C, Grasby S E, Wieser M E, Mayer B, Beauchamp B. 2013. Molybdenum isotopic evidence for oxic marine conditions during the latest Permian extinction. Geology, 41:967-970
[48]  Rahaman W, Singh S K, Raghav S. 2010. Dissolved Mo and U in rivers and estuaries of India:Implication to geochemistry of redox sensitive elements and their marine budgets. Chem Geol, 278:160-172
[49]  Reinhard C T, Planavsky N J, Robbins L J, Partin C A, Gill B C, Lalonde S V, Bekker A, Konhauser K O, Lyons T W. 2013. Proterozoic ocean redox and biogeochemical stasis. Proc Natl Acad Sci USA, 110:5357-5362
[50]  Reinhard C T, Raiswell R, Scott C, Anbar A D, Lyons T W. 2009. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science, 326:713-716
[51]  Reitz A, Wille M, Nagler T, Delange G. 2007. Atypical Mo isotope signatures in eastern Mediterranean sediments. Chem Geol, 245:1-8
[52]  Rouxel O J, Bekker A, Edwards K J. 2005. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science, 307:1088-1091
[53]  Sahoo S K, Planavsky N J, Kendall B, Wang X, Shi X, Scott C, Anbar A D, Lyons T W, Jiang G. 2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489:546-549
[54]  Scott C, Lyons T W. 2012. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks:Refining the paleoproxies. Chem Geol, 324:19-27
[55]  Scott C, Lyons T W, Bekker A, Shen Y, Poulton S W, Chu X, Anbar A D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452:456-459
[56]  Siebert C, Kramers J D, Meisel T, Morel P, N?gler T F. 2005. PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth. Geochim Cosmochim Acta, 69:1787-1801
[57]  Siebert C, N?gler T F, von Blanckenburg F, Kramers J D. 2003. Molybdenum isotope records as a potential new proxy for paleoceanography. Earth Planet Sci Lett, 211:159-171
[58]  Siebert C, Nagler T F, Kramers J D. 2001. Determination of molybdenum isotope fractionation by double-spoke multicollector inductively coupled plasma mass spetrometry. Geochem Geophys Geosyst, 2, doi:10.1029/2000GC000124
[59]  Slack J F, Cannon W F. 2009. Extraterrestrial demise of banded iron formations 1.85 billion years ago. Geology, 37:1011-1014
[60]  Slack J F, Grenne T, Bekker A, Rouxel O J, Lindberg P A. 2007. Suboxic deep seawater in the late Paleoproterozoic:Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth Planet Sci Lett, 255:243-256
[61]  Takahashi S, Yamasaki S I, Ogawa Y, Kimura K, Kaiho K, Yoshida T, Tsuchiya N. 2014. Bioessential element-depleted ocean following the euxinic maximum of the end-Permian mass extinction. Earth Planet Sci Lett, 393:94-104
[62]  Tossell J A. 2005. Calculating the partitioning of the isotopes of Mo between oxidic and sulfidic species in aqueous solution. Geochim Cosmochim Acta, 69:2981-2993
[63]  Turekian K K, Holland H D. 2013. Treatise on Geochemistry. 2nd ed. New York:Elsevier Science
[64]  Voegelin A R, N?gler T F, Beukes N J, Lacassie J P. 2010. Molybdenum isotopes in late Archean carbonate rocks:Implications for early Earth oxygenation. Precambrian Res, 182:70-82
[65]  Voegelin A R, N?gler T F, Samankassou E, Villa I M. 2009. Molybdenum isotopic composition of modern and Carboniferous carbonates. Chem Geol, 265:488-498
[66]  Voegelin A R, Pettke T, Greber N D, von Niederh?usern B, N?gler T F. 2014. Magma differentiation fractionates Mo isotope ratios:Evidence from the Kos Plateau Tuff(Aegean Arc). Lithos, 190-191:440-448
[67]  Wang D, Aller R C, Sa?udo-Wilhelmy S A. 2011. Redox speciation and early diagenetic behavior of dissolved molybdenum in sulfidic muds. Mar Chem, 125:101-107
[68]  Wasylenki L E, Rolfe B A, Weeks C L, Spiro T G, Anbar A D. 2008. Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides. Geochim Cosmochim Acta, 72:5997-6005
[69]  Wen H, Carignan J, Zhang Y, Fan H, Cloquet C, Liu S. 2011. Molybdenum isotopic records across the Precambrian-Cambrian boundary. Geology, 39:775-778
[70]  Wen H, Fan H, Zhang Y, Cloquet C, Carignan J. 2015. Reconstruction of early Cambrian ocean chemistry from Mo isotopes. Geochim Cosmochim Acta, 164:1-16
[71]  Wheat C G, Mottl M J, Rudnicki M. 2002. Trace element and REE composition of a low-temperature ridge-flank hydrothermal spring. Geochim Cosmochim Acta, 66:3693-3705
[72]  Wille M, Kramers J D, N?gler T F, Beukes N J, Schr?der S, Meisel T, Lacassie J P, Voegelin A R. 2007. Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim Cosmochim Acta, 71:2417-2435
[73]  Wille M, N?gler T F, Lehmann B, Schr?der S, Kramers J D. 2008. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary. Nature, 453:767-769
[74]  Wille M, Nebel O, Van Kranendonk M J, Schoenberg R, Kleinhanns I C, Ellwood M J. 2013. Mo-Cr isotope evidence for a reducing Archean atmosphere in 3.46-2.76 Ga black shales from the Pilbara, Western Australia. Chem Geol, 340:68-76
[75]  Xu L, Lehmann B, Mao J, N?gler T F, Neubert N, B?ttcher M E, Escher P. 2012. Mo isotope and trace element patterns of Lower Cambrian black shales in South China:Multi-proxy constraints on the paleoenvironment. Chem Geol, 318-319:45-59
[76]  Zerkle A L, Scheiderich K, Maresca J A, Liermann L J, Brantley S L. 2011. Molybdenum isotope fractionation by cyanobacterial assimilation during nitrate utilization and N2 fixation. Geobiology, 9:94-106
[77]  Czaja A D, Johnson C M, Roden E E, Beard B L, Voegelin A R, Nagler T F, Beukes N J, Wille M. 2012. Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation. Geochim Cosmochim Acta, 86:118-137
[78]  Dahl T W, Hammarlund E U, Anbar A D, Bond D P G, Gill B C, Gordon G W, Knoll A H, Nielsen A T, Schovsbo N H, Canfield D E. 2010b. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc Natl Acad Sci USA, 107:17911-17915
[79]  Duan Y, Anbar A D, Arnold G L, Lyons T W, Gordon G W, Kendall B. 2010. Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event. Geochim Cosmochim Acta, 74:6655-6668
[80]  Eroglu S, Schoenberg R, Wille M, Beukes N, Taubald H. 2015. Geochemical stratigraphy, sedimentology, and Mo isotope systematics of the ca. 2.58-2.50 Ga-old Transvaal Supergroup carbonate platform, South Africa. Precambrian Res, 266:27-46
[81]  Farquhar J. 2000. Atmospheric influence of Earth''s earliest sulfur cycle. Science, 289:756-758
[82]  Feng L, Li C, Huang J, Chang H, Chu X. 2014. A sulfate control on marine mid-depth euxinia on the early Cambrian(ca. 529-521 Ma) Yangtze platform, South China. Precambrian Res, 246:123-133
[83]  Fike D A, Grotzinger J P, Pratt L M, Summons R E. 2006. Oxidation of the Ediacaran ocean. Nature, 444:744-747
[84]  Gaucher E A, Govindarajan S, Ganesh O K. 2008. Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature, 451:704-707
[85]  Gilleaudeau G J, Kah L C. 2013. Oceanic molybdenum drawdown by epeiric sea expansion in the Mesoproterozoic. Chem Geol, 356:21-37
[86]  Goldberg T, Archer C, Vance D, Poulton S W. 2009. Mo isotope fractionation during adsorption to Fe(oxyhydr) oxides. Geochim Cosmochim Ac, 73:6502-6516
[87]  Goldberg T, Archer C, Vance D, Thamdrup B, McAnena A, Poulton S W. 2012. Controls on Mo isotope fractionations in a Mn-rich anoxic marine sediment, Gullmar Fjord, Sweden. Chem Geol, 296-297:73-82
[88]  Goldberg T, Gordon G, Izon G, Archer C, Pearce C R, McManus J, Anbar A D, Rehk?mper M. 2013. Resolution of inter-laboratory discrepancies in Mo isotope data:An intercalibration. J Ann Atom Spectrom, 28:724-735
[89]  Goldberg T, Strauss H, Guo Q, Liu C. 2007. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform:Evidence from biogenic sulphur and organic carbon isotopes. Paleogeogr Paleoclimatol Paleoecol, 254:175-193
[90]  Gordon G W, Lyons T W, Arnold G L, Roe J, Sageman B B, Anbar A D. 2009. When do black shales tell molybdenum isotope tales? Geology, 37:535-538
[91]  Greber N D, Hofmann B A, Voegelin A R, Villa I M, N?gler T F. 2011. Mo isotope composition in Mo-rich high-and low-T hydrothermal systems from the Swiss Alps. Geochim Cosmochim Acta, 75:6600-6609
[92]  Hannah J L, Stein H J, Wieser M E, de Laeter J R, Varner M D. 2007. Molybdenum isotope variations in molybdenite:Vapor transport and Rayleigh fractionation of Mo. Geology, 35:703-706
[93]  Hansel C M, Zeiner C A, Santelli C M, Webb S M. 2012. Mn(Ⅱ) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction. Proc Natl Acad Sci USA, 109:12621-12625
[94]  Helz G R, Bura-Naki?E, Mikac N, Ciglene?ki I. 2011. New model for molybdenum behavior in euxinic waters. Chem Geol, 284:323-332
[95]  Helz G R, Miller C V, Charnock J M, Mosselmans J F W, Pattrick R A D, Garner C D, Vaughan D J. 1996. Mechanism of molybdenum removal from the sea and its concentration in black shales:EXAFS evidence. Geochim Cosmochim Acta, 60:3631-3642
[96]  Herrmann A D, Kendall B, Algeo T J, Gordon G W, Wasylenki L E, Anbar A D. 2012. Anomalous molybdenum isotope trends in Upper Pennsylvanian euxinic facies:Significance for use of δ98Mo as a global marine redox proxy. Chem Geol, 324-325:87-98
[97]  Hoffman P F. 1998. A Neoproterozoic Snowball Earth. Science, 281:1342-1346
[98]  Holland H D. 2006. The oxygenation of the atmosphere and oceans. Philos Trans R Soc B-Biol Sci, 361:903-915
[99]  Kah L C, Lyons T W, Frank T D. 2004. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature, 431:834-838
[100]  Li C, Love G D, Lyons T W, Scott C T, Feng L, Huang J, Chang H, Zhang Q, Chu X. 2012. Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China. Earth Planet Sci Lett, 331-332:246-256
[101]  Li C, Planavsky N J, Love G D, Reinhard C T, Hardisty D, Feng L J, Bates S M, Huang J, Zhang Q R, Chu X L, Lyons T W. 2015. Marine redox conditions in the middle Proterozoic ocean and isotopic constraints on authigenic carbonate formation:Insights from the Chuanlinggou Formation, Yanshan Basin, North China. Geochim Cosmochim Acta, 150:90-105
[102]  Li Z X, Bogdanova S V, Collins A S, Davidson A, De Waele B, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu S, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia:A synthesis. Precambrian Res, 160:179-210
[103]  Liermann L J, Guynn R L, Anbar A, Brantley S L. 2005. Production of a molybdophore during metal-targeted dissolution of silicates by soil bacteria. Chem Geol, 220:285-302
[104]  Loyd S J, Marenco P J, Hagadorn J W, Lyons T W, Kaufman A J, Sour-Tovar F, Corsetti F A. 2012. Sustained low marine sulfate concentrations from the Neoproterozoic to the Cambrian:Insights from carbonates of northwestern Mexico and eastern California. Earth Planet Sci Lett, 339-340:79-94
[105]  Lyons T W, Anbar A D, Severmann S, Scott C, Gill B C. 2009. Tracking euxinia in the ancient ocean:A multiproxy perspective and Proterozoic case study. Annu Rev Earth Planet Sci, 37:507-534
[106]  McFadden K A, Huang J, Chu X, Jiang G, Kaufman A J, Zhou C, Yuan X, Xiao S. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc Natl Acad Sci USA, 105:3197-202
[107]  McManus J, N?gler T F, Siebert C, Wheat C G, Hammond D E. 2002. Oceanic molybdenum isotope fractionation:Diagenesis and hydrothermal ridge-flank alteration. Geochem Geophys Geosyst, 3:1-9
[108]  Metz S, Trefry J H. 2000. Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. Geochim Cosmochim Acta, 64:2267-2279
[109]  Miller C A, Peucker-Ehrenbrink B, Walker B D, Marcantonio F. 2011. Re-assessing the surface cycling of molybdenum and rhenium. Geochim Cosmochim Acta, 75:7146-7179
[110]  Morel F M, Price N M. 2003. The biogeochemical cycles of trace metals in the oceans. Science, 300:944-947

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133