全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一个平坦低矮植被陆面动力学粗糙度多因子参数化方案及其检验

DOI: 10.1007/s11430-015-5137-z, PP. 1713-1727

Keywords: 平坦低矮植被,多因子影响,动力学粗糙度,参数化方案,摩擦速度

Full-Text   Cite this paper   Add to My Lib

Abstract:

?动力学粗糙度长度是大气数值模式和微气象计算的重要物理参数,其准确性会影响大气数值模式的性能和微气象计算水平.然而影响动力学粗糙度长度的因素很多,通常给出的动力学粗糙度长度参数往往只考虑单个因素的作用,其适应能力具有明显的局限性,往往给陆面动量通量(摩擦速度)的估算带来很大误差.本文利用近几年对动力学粗糙度长度与各种不同影响因素的参数关系的研究成果,构建了一个包含近地层大气动力特征、大气热力特征、植被自然生长规律、降水年际波动的生态效应和植被类型等多个影响因子的动力学粗糙度长度参数化方案,该参数化方案几乎考虑了平坦低矮植被动力学粗糙度长度的全部影响因素.同时,还利用兰州大学半干旱气候与环境观测站多年观测资料对该动力学粗糙度长度参数化方案的应用效果与其他实验方案进行了系统比较分析.发现该参数化方案计算的摩擦速度不仅远比用常数动力学粗糙度长度计算的摩擦速度误差小,而且也明显比仅考虑部分因素变化的其他参数化方案计算的摩擦速度误差小.与以往用固定不变的动力学粗糙度长度计算的摩擦速度相比,其与观测值的相关系数由0.752提高到了0.937,标准差和偏差分别降低了近20%和80%;其与观测值的平均值仅相差0.004ms-1,相对误差仅1.6%左右,大大减少了近地层动量通量的估算误差.检验表明,本文构建的针对平坦低矮植被的动力学粗糙度长度的多因子普适性参数化方案可以为大气数值模式提供更加科学的参数化方案.

References

[1]  张强, 胡向军, 王胜, 等. 2009b. 黄土高原陆面过程试验研究(LOPEX)有关科学问题. 地球科学进展, 24:363-371
[2]  张强, 胡隐樵. 2001. 边界层气象学的研究进展和面临的主要科学问题. 地球科学进展, 16:526-532
[3]  张强, 李宏宇, 岳平. 2013. 陇中黄土高原自然植被下垫面陆面过程及其参数对降水波动的气候响应. 物理学报, 62:019201
[4]  张强, 吕世华. 2003. 城市表面粗糙度长度的确定. 高原气象, 22:25-31
[5]  张强, 王胜. 2008. 关于黄土高原陆面过程及其观测试验研究. 地球科学进展, 23:167-173
[6]  曹文俊. 1991. 粗糙长度综述. 气象, 17:45-47
[7]  陈家宜, 王介民, 光田宁. 1993. 一种确定地表粗糙度的独立方法. 大气科学, 17:21-26
[8]  贾立, 王介民, 胡泽勇. 2000. 干旱区热力学粗糙度特征及对感热通量估算的影响. 高原气象, 19:495-503
[9]  李振山, 陈广庭. 1997. 粗糙度研究的现状及展望. 中国沙漠, 17:99-102
[10]  梅凡民, Rajot J, Alfaro S, 等. 2006. 平坦沙地的空气动力学粗糙度变化及其物理意. 自然科学进展, 16:325-330
[11]  姚彤, 张强, 尹晗. 2014. 半干旱区榆中地表粗糙度年变化及影响机理. 应用气象学报, 25:454-462
[12]  张宏昇, 陈家宜. 1997. 非单一水平均匀下垫面空气动力学参数的确定. 应用气象学报, 8:310-315
[13]  张强, 王胜, 张杰, 等. 2009a. 干旱区陆面过程和大气边界层研究进展. 地球科学进展, 24:1185-1194
[14]  张强, 曾剑, 姚桐. 2012a. 植被下垫面近地层大气动力状态与动力学粗糙度长度的相互作用相互作用及其参数化关系. 科学通报, 57:647-655
[15]  张强, 曾剑, 张立阳. 2012b. 夏季风盛行期中国北方典型区域陆面水、热过程特征研究. 中国科学:地球科学, 42:1385-1393
[16]  张强, 李宏宇, 赵建华. 2012c. 垂直平流输送和土壤热储存补偿对黄土高原地表能量平衡的修正. 中国科学:地球科学, 42:42-51
[17]  周艳莲, 孙晓敏, 朱治林, 等. 2006. 几种不同下垫面地表粗糙度动态变化及其对通量机理模型模拟的影响. 中国科学D辑:地球科学, 36(S1):244-254
[18]  Stull R B. 1991. 边界层气象导论. 见:杨长新, 译. 北京:气象出版社. 719
[19]  Arya S P S. 1975. Buoyancy effects in a horizontal flat-plate boundary layer. J Fluid Mech, 68:321-343
[20]  Blihco R G, Partheniades E. 1971. Turbulence characteristics in free surface flows over smooth and rough boundaries. J Hyd Res, 9:43-69
[21]  Charnock H. 1955. Wind stress over a water surface. Q J R Meteorol Soc, 81:639-640
[22]  Coelho S L V, Hunt J C R. 1989. Vorticity dynamics of the near field of strong jets in cross flows. J Fluid Mech, 200:411-445
[23]  Dickinson R E, Kenney P J. 1986. Biosphere-atomosphere transfer scheme(BATS) for the NCAR community climate model national center for atmospheric research. Boulder, CO, Tech Note/TN-275+STR
[24]  Dyer A J. 1974. A review of flux-profile relationships. Bound-Layer Meteor, 7:363-372
[25]  Dyer A J, Bradley E F. 1982. An alternative analysis of flux-gradient relationships at the 1976 ITCE. Bound-Layer Meteor, 22:3-19
[26]  Garratt J R. 1992. The Atmospheric Boundary Layer. Cambridge:Cambridge University Press
[27]  Huang J, Guan X, Ji F. 2012. Enhanced cold-season warming in semi-arid regions. Atmos Chem Phys, 12:4627-4653
[28]  Huang J P. 2008. An overview of the semi-arid climate and environment research observatory over the Loess Plateau. Adv Atmos Sci, 25:906-921
[29]  Joffre S M. 1982. Momentum and heat transfers in the surface layer over a frozen sea. Bound-Layer Meteor, 24:211-229
[30]  Kaimal J C, Finnigan J J. 1994. Atmospheric Boundary Layer Flows. New York:Oxford University Press. 70
[31]  Kondo J, Yamazawa H. 1986. Aerodynamic roughness over an inhomogeneous ground surface. Bound-Layer Meteor, 35:331-348
[32]  Lettau H. 1969. Note on aerodynamic roughness-parameter estimation on the basis of roughness element description. J Appl Meteorol, 8:828-832
[33]  Martano P. 2000. Estimation of surface roughness length and displacement height from Single\Level Sonic Anemometer Data. J Appl Meteorol, 39:708-715
[34]  Monin A S, Obukhov A M. 1954. Basic laws of turbulence mixing in the surface layer of the atmosphere. Trudy Geofiz Inst AN SSSR, 24:163-187
[35]  Monteith J L. 1973. Principles of Environmental Physics. London:Edward Arnold. 241
[36]  Mwenderaa E J, Feyen J. 1994. Effects of tillage and rainfall on soil surface roughness and properties. Soil Tech, 7:93-103
[37]  Paulson C A. 1970. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol, 9:857-861
[38]  Schmid H P, Bunzli B. 1995. The influence of surface texture on the effective roughness length. Q J R Meteorol Soc, 121:1-21
[39]  Sellers P J, Mintz Y, Sud Y C, et al. 1986. A simple biosphere model(SIB) for use within general circulation models. J Atmos Sci, 43:505-531
[40]  Stull R B. 1988. An Introduction to Boundary Layer Meteorology. Dordrecht:Kluwer Academic Publishers
[41]  Wang G, Huang J, Guo W, et al. 2011. Observation analysis of land-atmosphere interactions over the Loess Plateau of northwest China. J Geophys Res, 115:D00K17, doi:10.1029/2009JD013372
[42]  Wood N, Mason P. 1991. The influence of static stability on the effective roughness lengths for momentum and heat transfer. Q J R Meteorol Soc, 117:1025-1056
[43]  Wu J. 1988. On nondimensional correlation between roughness length and wind-friction velocity. J Oceanogr Soc Jpn, 44:254-260
[44]  Yan H R, Huang J, Minnis P, et al. 2011. Comparison of CERES surface radiation fluxes with surface observations over Loess Plateau. Remote Sens Environ, 115:1489-1500
[45]  Zilitinkevich S S, Mammarella I, Baklanov A A, et al. 2008. The effect of stratification on the aerodynamic roughness length and displacement height. Bound-Layer Meteor, 129:179-190
[46]  Zhang Q, Yao T, Yue P, et al. 2013. The influences of thermodynamic characteristics on aerodynamic roughness length over land surface. Acta Meteor Sin, 27:249-262
[47]  Zuo J, Huang J, Wang J, et al. 2009. Surface turbulent flux measurements over the Loess Plateau for a semi-arid climate change study. Adv Atmos Sci, 26:679-691

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133