Lorenz E N. 1965. A study of the predictability of a 28-variable atmospheric model. Tellus, 17: 321-333
[2]
Mantua N J, Battisti D S. 1995. Aperiodic variability in the Zebiak-Cane coupled ocean-atmosphere model: Air-sea interactions in the western equatorial Pacific. J Clim, 8: 2897-2927
[3]
Moore A M, Kleeman R. 1996. The dynamics of error growth and predictability in a coupled model of ENSO. Q J R Meteorol Soc, 122: 1405-1446
[4]
Mu M, Duan W S, Wang B. 2003. Conditional nonlinear optimal perturbation and its applications. Nonlinear Process Geophys, 10: 493-501
[5]
Mu M, Xu H, Duan W S. 2007. A kind of initial errors related to “spring predictability barrier” for El Ni?o events in Zebiak-Cane model. Geophys Res Lett, 34: L03709, doi:10.1029/2006GL027412
[6]
Osborne A R, Pastorello A. 1993. Simultaneous occurrence of low-dimensional chaos and colored random noise in nonlinear physical systems. Phys Lett A, 181: 159-171
[7]
Palmer T N, Gelaro R, Barkmeijer J, et al. 1998. Singular vectors, metrics, and adaptive observations. J Atmos Sci, 55: 633-653
[8]
Qin X H, Duan W S, Mu M. 2013. Conditions under which CNOP sensitivity is valid for tropical cyclone adaptive observations. Q J R Meteorol Soc, 139: 1544-1554
[9]
Qin X H, Mu M. 2011. Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts. Q J R Meteorol Soc, 138: 185-197
[10]
Sun G D, Mu M. 2011. Nonlinearly combined impacts of initial perturbation from human activities and parameter perturbation from climate change on the grassland ecosystem. Nonlinear Process Geophys, 18: 883-893
[11]
Teman R. 1991. Approximation of attractors, large eddy simulations and multiscale methods. Proc R Soc A-Math Phys Eng Sci, 434: 23-29
[12]
Thompson C J, Battisti D S. 1995. A linear stochastic dynamical model of ENSO. Part I: Model development. J Clim, 8: 2897-2927
[13]
Thompson C J. 1998. Initial conditions for optimal growth in a coupled ocean-atmosphere model of ENSO. J Atmos Sci, 55: 537-557
[14]
Wang B, Tan X W. 2010. Conditional nonlinear optimal perturbations: Adjoint-free calculation method and preliminary test. Mon Weather Rev, 138: 1043-1049
[15]
Yu Y S, Duan W S, Xu H. 2009. Dynamics of nonlinear error growth and season-dependent predictability of El Ni?o events in the Zebiak-Cane model. Q J R Meteorol Soc, 135: 2146-2160
[16]
Yu Y S, Mu M, Duan W S, et al. 2012. Contribution of the location and spatial pattern of initial error to uncertainties in El Nino predictions. J Geophys Res, 117: 1-13
[17]
Zebiak S E, Cane M A. 1987. A model El Ni?o-Southern oscillation. Mon Weather Rev, 115: 2262-2278
[18]
Birgin E G, Martínez J M, Raydan M. 2000. Nonmonotone spectral projected gradient methods on convex sets. SIAM J Optim, 10: 1196-1211
[19]
Blumenthal M B. 1991. Predictability of a coupled ocean-atmosphere model. J Clim, 4: 766-784
[20]
Buizza R, Montani A. 1999. Targeting observations using singular vectors. J Atmos Sci, 56: 2965-2985
[21]
Cai M, Kalnay E, Toth Z. 2003. Bred vectors of the Zebiak-Cane model and their potential application to ENSO predictions. J Clim, 16: 40-56
[22]
Duan W S, Mu M, Wang B. 2004. Conditional nonlinear optimal perturbation as the optimal precursors for El Ni?o-Southern Oscillation events. J Geophys Res, 109: 1984-2012
[23]
Duan W S, Xue F, Mu M. 2009. Investigating a nonlinear characteristic of ENSO events by conditional nonlinear optimal perturbation. Atmos Res, 94: 10-18
[24]
Duan W S, Yu Y S, Xu H, et al. 2012. Behaviors of nonlinearities modulating El Ni?o events induced by optimal precursory disturbance. Clim Dyn, 40: 1399-1413
[25]
Foias C, Teman R. 1997. Structure of the set of stationary solution of the Novier-Stokes equations. Commun Pur Appl Math, 30: 149-164
[26]
Houtekamer P L, Mitchell H L. 2001. A sequential ensemble Kalman filter for atmospheric data assimilation. Mon Weather Rev, 129: 123-137