全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

华北一次持续性重度雾霾天气的产生、演变与转化特征观测分析

, PP. 427-443

Keywords: 持续性雾霾天气,霾气溶胶积累,霾雾转化,华北地区

Full-Text   Cite this paper   Add to My Lib

Abstract:

?2011年12月1~7日在华北地区发生了一次比较罕见、持续一周左右的低能见度重度雾霾天气,本文利用气象行业专项"京津地区低能见度雾霾天气监测与预报研究"观测试验资料,研究分析了此次持续性重度雾霾天气的气溶胶、云凝结核(CCN)、雾滴谱和含水量等微物理特征及大气能见度、边界层垂直结构特征,探讨了雾霾天气的产生、演变与转化特征及机理.结果表明,此次持续一周的雾霾天气过程发生在高压天气系统和静风条件下,暖平流和辐射降温形成的稳定逆温边界层结构有利于污染气溶胶的积累和雾霾的形成和发展,尤其是来自南方持续不断的湿平流使雾霾天气得以长时间持续和发展.整个雾霾天气期间能见度均小于2km,最低能见度达到56m,液态水含量在10-3gm-3量级,最大达到0.16gm-3,气溶胶数浓度均在10000cm-3以上,质量浓度范围为50~160mgm-3.进一步的研究表明,此次长达一周的雾霾天气发生了三次强弱不同的霾气溶胶积累、霾雾转化和混合及减弱三个主要阶段.霾气溶胶积累阶段先后有爱根核模和积聚模气溶胶数浓度的积累和增加.霾向雾转化和混合阶段中,雾滴凝结释放的潜热和高浓度气溶胶环境使布朗碰并加剧,导致气溶胶尺度向粒径大的方向转移,从而提供了大量可形成云凝结核的气溶胶粒子,促进了雾的爆发性增强,浓雾过程中气溶胶向CCN活化率可达17%,而CCN向雾滴的转化效率可高达100%,此期间雾滴谱具有爆发性拓宽的特征;冷锋系统过境或辐射加热增强导致了雾霾过程的减弱和消散.

References

[1]  李子华, 刘端阳, 杨军. 2011a. 辐射雾雾滴谱拓宽的微物理过程和宏观条件. 大气科学, 35: 41-54
[2]  李子华, 刘端阳, 封洋, 等. 2011b. 中国雾水化学研究进展. 气象学报, 69: 544-554
[3]  刘端阳, 蹼梅娟, 杨军, 等. 2009. 2006年12月南京连续4天浓雾的微物理结构及演变特征. 气象学报, 67: 147-157
[4]  卢广献, 郭学良. 2012. 环北京春季大气气溶胶分布、来源及其与CCN 转化关系的飞机探测. 科学通报, 57: 1334-1344
[5]  Seinfeld J H, Pandis S N. 1997. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. New York: John Wiley and Sons. 377-390
[6]  Stein D C, Swap R J, Greco S, et al. 2003. Haze layer characterization and associated meteorological controls along the eastern coastal region of southern Africa. J Geophys Res, 108: 8506
[7]  Stewart R E, Yiu D T, Chung K K, et al. 1995. Weather conditions associated with the passage of precipitation type transition regions over eastern Newfoundland. Atmos-Ocean, 33: 25-53
[8]  贾星灿, 郭学良. 2012. 人为大气污染物对一次冬季浓雾形成发展的影响研究. 大气科学, 36: 995-1008
[9]  李子华, 彭中贵. 1994. 重庆市冬季雾的物理化学特性. 气象学报, 52: 477-483
[10]  濮梅娟, 张国正, 严文莲, 等. 2008. 一次罕见的平流辐射雾过程的特征. 中国科学D辑: 地球科学, 38: 776-783
[11]  唐孝炎, 张远航, 邵敏. 2006. 大气环境化学. 北京: 高等教育出版社. 286-290
[12]  吴兑. 2012. 近十年中国灰霾天气研究综述. 环境科学学报, 32: 257-269
[13]  杨军, 牛忠清, 石春娥, 等. 2010. 南京冬季雾霾过程中气溶胶粒子的微物理特征. 环境科学, 31: 1425-1431
[14]  张小曳, 张养梅, 曹国良. 2012. 北京PM1中的化学组成及其控制对策思考. 应用气象学报, 23: 257-264
[15]  中国气象局. 2003. 地面气象观测规范. 北京: 气象出版社. 23-24
[16]  中国气象局. 2010. 霾的观测和预报等级. 中华人民共和国气象行业标准QX/T 113-2010. 北京: 气象出版社
[17]  Baxla S P, Roy A A, Gupta T, et al. 2009. Analysis of diurnal and seasonal variation of submicron outdoor aerosol mass and size distribution in a northern Indian city and its correlation to black carbon. Aerosol Air Qual Res, 9: 458-469
[18]  Dall''Osto M, Harrison R M, Coe H, et al. 2009. Real-time secondary aerosol formation during a fog event in London. Atmos Chem Phys, 9: 2459-2469
[19]  Drewnick F, Jayne J T, Canagaratna M, et al. 2004. Measurement of ambient aerosol composition during the PMTACS-NY 2001 using an aerosol mass spectrometer. Part II: Chemically speciated mass distributions. Aerosol Sci Tech, 38:104-117
[20]  Eldridge R G. 1969. Mist-the transition from haze to fog. Bull Amer Meteorol Soc, 50: 422-426
[21]  Elias T, Haeffelin M, Drobinski P, et al. 2009. Particulate contribution to extinction of visible radiation: Pollution, haze, and fog. Atmos Res, 92: 443-454
[22]  Fahey K M, Pandis S N, Colett Jr J L, et al. 2005. The influence of size-dependent droplet composition on pollutant processing by fogs. Atmos Environ, 39: 4561-4574
[23]  Friedlander S K. 2000. Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics. 2nd ed. New York, Oxford: Oxford University Press. 188-219
[24]  Gautam R, Hsu N C, Kafatos M, et al. 2007. Influences of winter haze on fog/low cloud over the Indo-Gangetic. J Geophys Res, 112: 207
[25]  Gerber H E. 1981. Microstructure of a radiation fog. J Atmos Sci, 38: 454-458
[26]  Gerber H. 1991. Supersaturation and droplet spectral evolution in fog. J Atmos Sci, 48: 2569-2588
[27]  Gultepe I, Tardif R, Michaelides S C, et al. 2007a. Fog research: A review of past achievements and future perspectives. Pure Appl Geophys, 164: 1121-1159
[28]  Gultepe I, Milbrandt J A. 2007b. Microphysical observations and mesoscale model simulation of a warm fog case during FRAM project. Pure Appl Geophys, 164: 1161-1178
[29]  Heintzenberg J. 1989. Fine particles in the global troposphere: A review. Tellus Ser B-Chem Phys Meteorol, 41: 149-160
[30]  Hudson J G. 1980. Relationship between fog condensation nuclei and fog microstructure. J Atmos Sci, 37: 1854-1867
[31]  Husar R B, Whitby K T, Liu B Y H. 1972. Physical mechanisms governing the dynamics of Los Angeles smog aerosol. J Colloid Interf Sci, 39: 211-224
[32]  Husar R B, Holloway J M. 1984. The properties and climate of atmospheric haze. Hygroscopic Aerosols. Hampton, Virginia: A Deepak Publishing. 129-170
[33]  Jacobson M Z. 1997. Development and application of a new air pollution modeling system-II. Aerosol module structure and design. Atmos Environ, 31: 131-144
[34]  Kang H Q, Zhu B, Su J F, et al. 2013. Analysis of a long-lasting haze episode in Nanjing, China. Atmos Res, 120-121: 78-87
[35]  K?hler H. 1936. The nucleus in and the growth of hygroscopic droplets. Trans Faraday Soc, 32: 1152-1161
[36]  Laaksonen A, Korhonen P, Kulmala M, et al. 1998. Modification of the K?hler equation to include soluble trace gases and slightly soluble substances. J Atmos Sci, 55: 853-862
[37]  Lewis J, Koracin D, Rabin R, et al. 2003. Sea fog off the California coast: Viewed in the context of transient weather systems. J Geophys Res, 108: 4457
[38]  Liu X G, Li J, Qu Y, et al. 2013. Formation and evolution mechanism of regional haze: A case study in the megacity Beijing, China. Atmos Chem Phys, 13: 4501-4514
[39]  Meng Z Y, Dabdub D, Seinfeld J H. 1998. Size-resolved and chemically resolved model of atmospheric aerosol dynamics. J Geophys Res, 103: 3419-3435.
[40]  Meteorological Office. 1994. Handbook of Aviation Meteorology. 3rd ed. London: His Majesty''s Stationery Office
[41]  Meyer M B, Jiusto J E, Garland L G. 1980. Measurements of visual range and radiation fog (Haze) microphysics. J Atmos Sci, 37: 622-629
[42]  Niu S J, Lu C S, Yu H Y, et al. 2010. Fog research in China: An overview. Adv Atmos Sci, 27: 639-661
[43]  Ogren J A, Noone K J, Hallberg A, et al. 1992. Measurement of the size dependence of the concentration of non-volatile material in fog droplets. Tellus Ser B-Chem Phys Meteorol, 44: 570-580
[44]  Pandis S N, Seinfeld J H, Pilinis C. 1990. The smog-fog-smog cycle and acid deposition. J Geophys Res, 95: 18489-18500
[45]  Petters M D, Kreidenweis S M. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos Chem Phys, 7: 1961-1971
[46]  Pinnick R G, Hoihjelle D L, Fernandez G, et al. 1978. Vertical structure in atmospheric fog and haze and its effects on visible and infrared extinction. J Atmos Sci, 35: 2020-2032
[47]  Quan J, Zhang Q, He H, et al. 2011. Analysis of the formation of fog and haze in North China Plain (NCP). Atmos Chem Phys, 11: 8205-8214
[48]  Rangognio J, Tulet P, Bergot T, et al. 2009. Influence of aerosols on the formation and development of radiation fog. Atmos Chem Phys Discuss, 9: 17963-18019
[49]  Remer L A, Tanre D, Kaufman Y J. 2006. Algorithm for Remote Sensing of Tropospheric Aerosol from MODIS: Collection 005. Product ID: MOD04/MYD04. Algorithm Theoretical Basis Document. National Aeronautics and Space Administration
[50]  Wang X F, Wang W X, Yang L X, et al. 2012. The secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditions. Atmos Environ, 63: 68-76
[51]  WMO/GAW. 2003. WMO/GAW Aerosol Measurement Procedures Guidelines and Recommendations. WMO TD No. 1178. GAW Report No. 153. Geneva: World Meteorological Organization
[52]  WMO. 2005. Aerodrome Reports and Forecasts: A User''s Handbook to the Codes. WMO No.782. Geneva: World Meteorological Organization
[53]  Yu X N, Zhu B, Yin Y, et al. 2011. A comparative analysis of aerosol properties in dust and haze-fog days in a Chinese urban region. Atmos Res, 99: 241-247
[54]  Zhang Q, Tie X X, Lin W L, et al. 2013. Variability of SO2 in an intensive fog in North China Plain: Evidence of high solubility of SO2. Particuology, 11: 41-47
[55]  Zhang X Y, Wang Y Q, Niu T, et al. 2012. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos Chem Phys, 12: 779-799

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133