全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

冬季强、弱平流层增温事件的发生与春季最后增温事件爆发早晚的联系

, PP. 389-401

Keywords: 平流层,强爆发性增温事件,弱爆发性增温事件,最后增温事件

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用1958~2012年NCEP-NCAR逐日再分析资料,对平流层冬季强、弱爆发性增温事件(SSW)的发生和春季最后增温事件(SFW)爆发的早晚进行了统计、对比和合成分析.结果表明,冬季SSW事件的强、弱以及发生与否,可关系到后期春季SFW事件爆发的早晚.具体地,在发生(未发生)冬季强SSW事件之后的春季,SFW事件的爆发趋于偏晚(早);而在冬季弱SSW事件之后的春季,出现SFW事件爆发早和爆发晚的几率相当.对比冬季强、弱SSW过程中环流以及行星波活动异常的演变发现,在冬季强SSW事件爆发约30天之后,平流层会出现相反的强极涡(强极夜急流)型异常环流,伴随的行星波活动强度的负异常可持续到SSW爆发后约45天;不同的是,冬季弱SSW事件所伴随的环流异常持续时间短,不存在后期的强极涡型环流异常和行星波活动的显著异常.为了进一步证实冬季强SSW事件的发生对春季SFW事件爆发早晚的可能影响,针对冬季强、弱SSW年以及无增温事件发生的普通年份分别进行了合成分析,平均而言,在有强SSW事件(无SSW事件)发生年的冬季月份,热带外平流层行星波活动异常偏强(弱),极夜急流和平流层极涡异常偏弱(强),但在后期的春季月份,行星波活动则异常偏弱(强),平流层极涡异常偏强(弱).在有冬季弱SSW事件发生年的后期春季,平流层极夜急流以及极涡的强度无显著异常,与气候平均状况接近.

References

[1]  陈文, 魏科. 2009. 大气准定常行星波异常传播及其在平流层影响东亚冬季气候中的作用. 地球科学进展, 24: 272-285
[2]  李琳, 李崇银, 谭言科, 等. 2010. 平流层爆发性增温对中国天气气候的影响及其在ENSO影响中的作用. 地球物理学报, 53: 1529-1542
[3]  胡景高, 任荣彩, 虞越越, 等. 2014. 北半球春季平流层最后增温过程及其年际和年代际变化特征. 中国科学: 地球科学, 44: 333-342
[4]  魏科, 陈文, 黄荣辉. 2007. 北半球平流层极涡崩溃过程的动力诊断分析. 中国科学: 地球科学, 37: 1110-1119
[5]  魏科, 陈文, 黄荣辉. 2008. 涡动在南北半球平流层极涡崩溃过程中作用的比较. 大气科学, 32: 206-219
[6]  Andrews D G, Holton J R, Leovy C B. 1987. Middle Atmosphere Dynamics. San Diego: Academic Press. 489
[7]  Ayarzaguena B, Serrano E. 2009. Monthly characterization of the tropospheric circulation over the Euro-Atlantic area in relation with the timing of stratospheric final warmings. J Clim, 22: 6313-6324
[8]  Baldwin M P, Dunkerton T J. 1999. Propagation of the arctic oscillation from the stratosphere to the troposphere. J Geophys Res, 104: 30937-30946
[9]  Baldwin M P, Dunkerton T J. 2001. Stratospheric harbingers of anomalous weather regimes. Science, 294: 581-584
[10]  Baldwin M P, Stephenson D B, Thompson D W J, et al. 2003. Stratospheric memory and skill of extended-range weather forecasts. Science, 301: 636-640
[11]  Bancala S, Kruger K, Giorgetta M. 2012. The preconditioning of major sudden stratospheric warmings. J Geophys Res, 117: D04101, doi: 10.1029/2011jd016769
[12]  Black R X, Mcdaniel B A. 2007a. Interannual variability in the Southern Hemisphere circulation organized by stratospheric final warming events. J Atmos Sci, 64: 2968-2974
[13]  Black R X, Mcdaniel B A. 2007b. The dynamics of northern hemisphere stratospheric final warming events. J Atmos Sci, 64: 2932-2946
[14]  Black R X, McDaniel B A, Robinson W A. 2006. Stratosphere-troposphere coupling during spring onset. J Clim, 19: 4891-4901
[15]  Cai M, Ren R C. 2006. 40-70 day meridional propagation of global circulation anomalies. Geophys Res Lett, 33: L06818, doi: 10.1029/2005GL025024
[16]  Cai M, Ren R C. 2007. Meridional and downward propagation of atmospheric circulation anomalies. Part I: Northern Hemisphere cold season variability. J Atmos Sci, 64: 1880-1901
[17]  Charlton A J, Polvani L M. 2007. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J Clim, 20: 449-469
[18]  Haigh J D, Roscoe H K. 2009. The final warming date of the Antarctic polar vortex and influences on its interannual variability. J Clim, 22: 5809-5819
[19]  Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc, 77: 437-471
[20]  Kolstad E W, Charlton-Perez A J. 2011. Observed and simulated precursors of stratospheric polar vortex anomalies in the Northern Hemisphere. Clim Dyn, 37: 1443-1456
[21]  Labitzke K. 1977. Interannual Variability of the winter stratosphere in the Northern Hemisphere. Mon Weather Rev, 105: 762-770
[22]  Labitzke K, Naujokat B. 2000. The lower arctic stratosphere in winter since 1952. ECMWF Newsl, 15: 11-14
[23]  Li L, Li C Y, Pan J, et al. 2012. On the differences and climate impacts of early and late stratospheric polar vortex breakup. Adv Atmos Sci, 29: 1119-1128
[24]  Limpasuvan V, Thompson D W J, Hartmann D L. 2004. The life cycle of the Northern Hemisphere sudden stratospheric warmings. J Clim, 17: 2584-2596
[25]  Manney G L, Kruger K, Sabutis J L, et al. 2005. The remarkable 2003-2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s. J Geophys Res, 110: D04107, doi 10.1029/2004jd005367
[26]  Matsuno T. 1971. A dynamical model of the stratospheric sudden warming. J Atmos Sci, 28: 1479-1494
[27]  Polvani L M, Waugh D W. 2004. Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J Clim, 17: 3548-3554.
[28]  Ren R C, Cai M. 2007. Meridional and vertical out-of-phase relationships of temperature anomalies associated with the Northern Annular Mode variability. Geophys Res Lett, 34: L07704, doi:10.1029/2006GL028729
[29]  Ren R C, Cai M. 2008. Meridional and downward propagation of atmospheric circulation anomalies. Part II: Southern Hemisphere cold season variability. J Atmos Sci, 65: 2343-2359
[30]  Scherhag R. 1952. Die explosionsartigen Stratosph?renerw?rmungen des Sp?twinters 1951-52. Ber Dtsch Wetterdienst, 6: 51-63
[31]  Thompson D W J, Wallace J M. 1998. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett, 25: 1297-1300
[32]  Thompson D W J, Wallace J M. 2000. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J Clim, 13: 1000-1016
[33]  Waugh D W, Rong P P. 2002. Interannual variability in the decay of lower stratospheric Arctic vortices. J Meteorol Soc Jpn, 80: 997-1012
[34]  Waugh D W, Randel W J, Pawson S, et al. 1999. Persistence of the lower stratospheric polar vortices. J Geophys Res, 104: 27191-27201
[35]  Zhou S T, Gelman M E, Miller A J, et al. 2000. An inter-hemisphere comparison of the persistent stratospheric polar vortex. Geophys Res Lett, 27: 1123-1126

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133