全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

白令海IODPU1340井位粘土矿物组合特征及其古气候意义

, PP. 468-480

Keywords: 白令海,1340井位,粘土矿物,结晶学特征,古气候

Full-Text   Cite this paper   Add to My Lib

Abstract:

?主要对白令海南部IODPU1340井位上新世以来(~4.3Ma)的粘土矿物组合和结晶学特征进行了分析,探讨了研究井位中粘土矿物的物质来源及其记录的古气候变化历史.结果表明,U1340井位中的粘土矿物组合以伊利石占绝对优势(平均含量为70%),蒙脱石和绿泥石次之(平均含量分别为17%和10%),高岭石含量很低(平均含量3%).研究井位中粘土矿物组合及其物源区主要受气候特征的影响,在温暖气候时期(如9.21ka以来)主要来自邻近的阿留申岛弧,蒙脱石含量较高;而冷气候时期(如2.74~1.07Ma)主要源自阿拉斯加大陆,伊利石和绿泥石含量升高.利用蒙脱石/(伊利石+绿泥石)比值及伊利石和蒙脱石的结晶学特征较好地揭示了白令海南部的古气候变化历史:白令海南部在4.3~3.94Ma以暖湿气候为主,3.94~3.6Ma则主要受到干冷气候的控制,同时阿留申岛弧火山作用在这一时期加强;此后逐渐向冷湿气候转变,至2.74Ma受北半球冰川作用的影响气候再次呈现干冷的特征;1.95Ma开始逐渐向冷湿气候过渡,经历1.07~0.8Ma中更新世气候转型之后,白令海南部主要受控于冷湿气候,但在~0.42Ma(MIS11),~0.33Ma(MIS9)及~0.12Ma(MIS5),气候相对温暖,化学风化作用加强;~9.21ka全新世以来白令海南部以相对的暖湿气候为主.

References

[1]  刘志飞, Colin C, Trentesaux A, 等. 2004. 南海南部晚第四纪东亚季风演化的黏土矿物记录. 中国科学D辑: 地球科学, 34: 272-279
[2]  刘志飞, 赵玉龙, 李建如, 等, 2007. 南海西部越南岸外晚第四纪粘土矿物记录: 物源分析与东亚季风演化. 中国科学D辑: 地球科学, 39: 1176-1184
[3]  万世明, 李安春, 胥可辉, 等. 2008. 南海北部中新世以来粘土矿物特征及东亚古季风记录. 地球科学—中国地质大学学报, 33: 289-300
[4]  张强, 陈木宏, 张兰兰, 等. 2014. 白令海南部上新世以来的放射虫生物地层. 中国科学: 地球科学, 44: 227-238
[5]  Aiello I W, Ravelo A C. 2012. Evolution of marine sedimentation in the Bering Sea since the Pliocene. Geosphere, 8: 1231-1253
[6]  Bintanja R, van de Wal R S, Oerlemans J. 2005. Modelled atmospheric temperatures and global sea levels over the past million years. Nature, 437: 125-128
[7]  Biscaye P E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull, 76: 803-832
[8]  Chamley H, Diester-Haass L. 1979. Upper Miocene to Pleistocene climates in northwest Africa deduced from terrigenous components of Site 397 sediments (DSDP Leg 47A). In: Ryan W B F, Sibuet J C, et al., eds. Init Repts DSDP. Washington D C: U.S. Government Printing Office. 641-646
[9]  Chamley H. 1989. Clay Sedimentology. New York: Springer-Verlag. 1-561
[10]  Hopkins D M. 1973. Sea level history in Beringia during the past 250000 years. Quat Res, 3: 520-540
[11]  Imbrie J, Shackleton N J, Pisias N G, et al. 1984. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. In: Berger A, ed. Milankovitch and Climate, Part 1. Dordrecht: Reidel Publishing Company. 269-305
[12]  Scholl D W, Buffington E C, Marlow M S. 1975. Plate tectonics and the structural evolution of the Aleutian-Bering Sea region. In: Forbes R B, ed. Contributions to the Geology of the Bering Sea Basin and Adjacent Regions. Geol Soc Am Spec Paper, 151: 1-32
[13]  Singer A. 1984. The paleoclimatic interpretation of clay minerals in sediments—A review. Earth-Sci Rev, 21: 251-293
[14]  Stabeno P J, Reed R K, Overland J E. 1994. Lagrangian measurements in the Kamchatka Current and Oyashio. J Oceanogr, 50: 653-662
[15]  Takahashi K. 1998. The Bering Sea and Okhotsk Sea: Modern and past paleoceanographhic changes and gateway impact. J Asian Earth Sci, 16: 49-58
[16]  Takahashi K. 1999. Paleoceanographic changes and present environment of the Bering Sea. In: Loughlin T R, Ohtani K, eds. Dynamics of the Bering Sea. Fairbanks: University of Alaska Sea Grant. 365-385
[17]  Takahashi K. 2005. The Bering Sea and paleoceanography. Deep-Sea Res Part Ii-Top Stud Oceanogr, 52: 2080-2091
[18]  Takahashi K, Ravelo A C, Alvarez Zarikian C A, et al. 2011. Proceedings of the Integrated Ocean Drilling Program, 323. Tokyo: Integrated Ocean Drilling Program Management International, Inc. doi: 10.2204/iodp.proc.323.104.2011
[19]  Teraishi A, Suto I, Onodera J, et al. 2013. Diatom, silicoflagellate and ebridian biostratigraphyand paleoceanography in IODP 323 Hole U1343E at the Bering slope site. Deep-Sea Res Part Ii-Top Stud Oceanogr, doi: 10.1016/j.dsr2.2013.03.026
[20]  Underwood M B, Hathon E G. 1989. Provenance and dispersal of muds south of the Aleutian arc, north Pacific Ocean. Geo-Mar Lett, 9: 67-75
[21]  VanLaningham S, Pisias N G, Duncan R A, et al. 2009. Glacial-interglacial sediment transport to the Meiji Drift, northwest Pacific Ocean: Evidence for timing of Beringian outwashing. Earth Planet Sci Lett, 277: 64-72
[22]  Wan S M, Li A C, Clift P D, et al. 2006. Development of the East Asian summer monsoon: Evidence from the sediment record in the South China Sea since 8.5 Ma. Paleogeogr Paleoclimatol Paleoecol, 241: 139-159
[23]  Wan S M, Li A C, Clift P D, et al. 2007. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Paleogeogr Paleoclimatol Paleoecol, 254: 561-582
[24]  Wan S M, Tian J, Steinke S, et al. 2010. Evolution and variability of the East Asian summer monsoon during the Pliocene: Evidence from clay mineral records of the South China Sea. Paleogeogr Paleoclimatol Paleoecol, 293: 237-247
[25]  Wang P X, Tian J, Cheng X R, et al. 2003. Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology, 31: 239-242
[26]  Zhang Q, Chen M H, Zhang L L, et al. 2014. Variations in the radiolarian assemblages in the Bering Sea since Pliocene and their implications for paleoceanography. Paleogeogr Paleoclimatol Paleoecol, 410: 337-350
[27]  Chekhovich V D, Kovalenko D V, Ledneva G V. 1999. Cenozoic history of the Bering Sea and its northwestern margin. Isl Arc, 8: 168-180
[28]  Chen M H, Zhang Q, Zhang L L, et al. 2014. Stratigraphic distribution of the radiolaria Spongodiscus biconcavus Haeckel at IODP Site U1340 in the Bering Sea and its paleoceanographic significance. Paleoworld, 23: 90-104
[29]  Clark P U, Archer D, Pollard D, et al. 2006. The middle Pleistocene transition: Characteristics, mechanisms, and implications for long-term changes in atmospheric PCO2. Quat Sci Rev, 25: 3150-3184
[30]  Coachman L K, Whitledge T E, Goering J J. 1999. Silica in Bering Sea deep and bottom water. In: Loughlin T R, Ohtani K, eds. The Physical Oceanography of the Bering Sea. Fairbanks: University of Alaska Sea Grant. 285-309
[31]  Diekmann B, Petschick R, Gingele F X, et al. 1996. Clay mineral fluctuations in late Quaternary of the southeastern South Atlantic: Implications for past changes of deepwater advection. In: Wefer G, Berger W H, Siedler G, et al., eds. The South Atlantic: Present and Past Circulation. Berlin: Springer. 621-644
[32]  Ehrmann W. 1998. Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Paleogeogr Paleoclimatol Paleoecol, 139: 213-231
[33]  Ehrmann W, Setti M, Marinoni L. 2005. Clay minerals in Cenozoic sediments off Cape Roberts (McMurdo Sound, Antarctica) reveal palaeoclimatic history. Paleogeogr Paleoclimatol Paleoecol, 229: 187-211
[34]  EPCIA Community. 2004. Eight glacial cycles from an Antarctic ice core. Nature, 429: 623-628
[35]  Franke D, Ehrmann W. 2010. Neogene clay mineral assemblages in the AND-2A drill core (McMurdo Sound, Antarctica) and their implications for environmental change. Paleogeogr Paleoclimatol Paleoecol, 286: 55-65
[36]  Gardner J V, Dean W E, Vallier T L. 1980. Sedimentology and geochemistry of surface sediments, outer continental shelf, southern Bering Sea. Mar Geol, 35: 299-329
[37]  Gingele F X. 1996. Holocene climatic optimum in Southwest Africa—Evidence from the marine clay mineral record. Paleogeogr Paleoclimatol Paleoecol, 122: 77-87
[38]  Gingele F X, Müller P M, Schneider R R. 1998. Orbital forcing of freshwater input in the Zaire Fan area—Clay mineral evidence from the last 200 kyr. Paleogeogr Paleoclimatol Paleoecol, 138: 17-26
[39]  Hood D W. 1983. The Bering Sea. In: Ketchum B H, ed. Estuaries and Enclosed Seas. Amsterdam: Elsevier Science Publishing. 337-373
[40]  Jacobs M B, Hays J D. 1972. Paleo-climatic events indicated by mineralogical changes in deep-sea sediments. J Sediment Res, 42: 889-898
[41]  Jansen J, Kuijpers A, Troelstra S. 1986. A mid-Brunhes climatic event: Long-term changes in global atmosphere and ocean circulation. Science, 232: 619-622
[42]  Jeong G Y, Yoon H I, Lee S Y. 2004. Chemistry and microstructures of clay particles in smectite-rich shelf sediments, South Shetland Islands, Antarctica. Mar Geol, 209: 19-30
[43]  Kent D, Opdyke N D, Ewing M. 1971. Climate change in the North Pacific using ice-rafted detritus as a climatic indicator. Geo Soc Am Bull, 82: 2741-2754
[44]  Knebel H J, Creager J S. 1973. Yukon River: Evidence for extensive migration during the Holocene transgression. Science, 179: 1230-1232
[45]  Ling H Y. 1992. Late Neogene silicoflagellates and ebridians from Leg 128, Sea of Japan. In: Pisciotto K A, Ingle J C, Jr von Breymann M T, et al., eds. Proceedings of the Ocean Drilling Program. Scientific Results 127/128. College Station: Ocean Drilling Program. 237-248
[46]  Lisiecki L E, Raymo M E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records, Paleoceanography, 20: PA1003, doi: 10.1029/2004PA001071
[47]  Liu J G, Li T G, Xiang R et al. 2013. Influence of the Kuroshio Current intrusion on Holocene environmental transformation in the South China Sea. Holocene, 23: 850-859
[48]  Liu Z F, Trentesaux A, Clemens S C, et al. 2003. Clay mineral assemblages in the northern South China Sea: Implications for East Asian monsoon evolution over the past 2 million years. Mar Geol, 201: 133-146
[49]  Liu Z F, Wang H, Hantoro W S. 2012. Climatic and tectonic controls on chemical weathering in tropical Southeast Asia (Malay Peninsula, Borneo, and Sumatra). Chem Geol, 291: 1-12
[50]  M?rz C, Schnetger B, Brumsack H J. 2013. Nutrient leakage from the North Pacific to the Bering Sea (IODP Site U1341) following the onset of Northern Hemispheric Glaciation? Paleoceanography, 28: 68-78
[51]  Maslin M A, Haug G H, Sarnthein M, et al. 1996. The progressive intensification of Northern Hemisphere glaciation as seen from the North Pacific. Geol Rundsch, 85: 452-465
[52]  McManus D A, Venkatarathnam K, Hopkins D M, et al. 1974. Yukon River sediment on the northernmost Bering Sea shelf. J Sediment Res, 44: 1052-1060
[53]  Moore D M, Reynolds R C J. 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford: Oxford University Press. 332
[54]  Mowatt T C, Naidu A S. 1987. A brief overview of the clay mineral assemblages in sediments of the major rivers of Alaska and adjacent Arctic Canada. In: Degens E T, Kempe S, Weibin G, eds. Transport of Carbon and Minerals in Major World Rivers, Pt. 4. Hamburg: Mitt Geol- Pal?ont Inst, University of Hamburg. 269-277
[55]  Mudelsee M, Schulz M. 1997. The Mid-Pleistocene climate transition: Onset of 100 ka cycle lags ice volume build-up by 280 ka. Earth Planet Sci Lett, 151: 117-123
[56]  Naidu A S, Creager J S, Mowatt T C. 1982. Clay mineral dispersal patterns in the North Bering and Chukchi Seas. Mar Geol, 47: 1-15
[57]  Naidu A S, Mowatt T C. 1983. Sources and dispersal patterns of clay minerals in surface sediments from the continental-shelf areas off Alaska. Geol Soc Am Bull, 94: 841-854
[58]  Naidu A S, Han M W, Mowatt T C, et al. 1995. Clay minerals as indicators of sources of terrigenous sediments, their transportation and deposition: Bering Basin, Russian-Alaskan Arctic. Mar Geol, 127: 87-104
[59]  Onodera J, Takahashi K, Nagatomo R. 2013. Diatoms, silicoflagellates, and ebridians at Site U1341 on the western slope of Bowers Ridge, IODP Expedition 323. Deep-Sea Res Part Ii-Top Stud Oceanogr, doi: 10.1016/j.dsr2.2013.03.025
[60]  Pearson C A, Mojfeld H O, Tripp R B. 1981. Tides of the eastern Bering Sea shelf. In: Hood D W, Calder J A, eds. The Eastern Bering Sea Shelf: Oceanography and Resources. Washington D C: U S Gov Print Off. 111-130
[61]  Petschick R, Kuhn G, Gingele F. 1996. Clay mineral distribution in surface sediments of the South Atlantic: Sources, transport, and relation to oceanography. Mar Geol, 130: 203-229
[62]  Ping C L, Shoji S, Ito T. 1988. Properties and classification of three volcanic ash-derived pedons from Aleutian Islands and Alaska Peninsula, Alaska. Soil Sci Soc Am J, 52: 455-462
[63]  Pisias N G, Moore Jr T C. 1981. The evolution of Pleistocene climate: A time series approach. Earth Planet Sci Lett, 52: 450-458
[64]  Raymo M E. 1994. The initiation of Northern Hemisphere glaciation. Annu Rev Earth Planet Sci, 22: 353-383
[65]  Roden G I. 1967. On river discharge into the northeastern Pacific Ocean and the Bering Sea. J Geophys Res, 72: 5613-5629
[66]  Rohling E J, Fenton M, Jorissen F J, et al. 1998. Magnitudes of sea-level lowstands of the past 500000 yr. Nature, 394: 162-165
[67]  Sancetta C, Robinson S. 1983. Diatom evidence on Wisconsin and Holocene events in the Bering Sea. Quat Res, 20: 232-245
[68]  Sancetta C L, Hausser L, Labeyrie L, et al. 1985. Wisconsin-Holocene paleoenvironment of the Bering Sea: Evidence from diatoms, pollen, oxygen isotopes and clay mineralogy. Mar Geol, 62: 55-68
[69]  Scholl D W, Buffington E C, Hopkins D M. 1968. Geologic history of the continental margin of North America in Bering Sea. Mar Geol, 6: 297-330
[70]  Scholl D W, Buffington E C, Hopkins D M, et al. 1970. The structure and origin of the large submarine canyons of the Bering Sea. Mar Geol, 8: 187-210

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133