Aiello I W, Ravelo A C. 2012. Evolution of marine sedimentation in the Bering Sea since the Pliocene. Geosphere, 8: 1231-1253
[6]
Bintanja R, van de Wal R S, Oerlemans J. 2005. Modelled atmospheric temperatures and global sea levels over the past million years. Nature, 437: 125-128
[7]
Biscaye P E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull, 76: 803-832
[8]
Chamley H, Diester-Haass L. 1979. Upper Miocene to Pleistocene climates in northwest Africa deduced from terrigenous components of Site 397 sediments (DSDP Leg 47A). In: Ryan W B F, Sibuet J C, et al., eds. Init Repts DSDP. Washington D C: U.S. Government Printing Office. 641-646
[9]
Chamley H. 1989. Clay Sedimentology. New York: Springer-Verlag. 1-561
[10]
Hopkins D M. 1973. Sea level history in Beringia during the past 250000 years. Quat Res, 3: 520-540
[11]
Imbrie J, Shackleton N J, Pisias N G, et al. 1984. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. In: Berger A, ed. Milankovitch and Climate, Part 1. Dordrecht: Reidel Publishing Company. 269-305
[12]
Scholl D W, Buffington E C, Marlow M S. 1975. Plate tectonics and the structural evolution of the Aleutian-Bering Sea region. In: Forbes R B, ed. Contributions to the Geology of the Bering Sea Basin and Adjacent Regions. Geol Soc Am Spec Paper, 151: 1-32
[13]
Singer A. 1984. The paleoclimatic interpretation of clay minerals in sediments—A review. Earth-Sci Rev, 21: 251-293
[14]
Stabeno P J, Reed R K, Overland J E. 1994. Lagrangian measurements in the Kamchatka Current and Oyashio. J Oceanogr, 50: 653-662
[15]
Takahashi K. 1998. The Bering Sea and Okhotsk Sea: Modern and past paleoceanographhic changes and gateway impact. J Asian Earth Sci, 16: 49-58
[16]
Takahashi K. 1999. Paleoceanographic changes and present environment of the Bering Sea. In: Loughlin T R, Ohtani K, eds. Dynamics of the Bering Sea. Fairbanks: University of Alaska Sea Grant. 365-385
[17]
Takahashi K. 2005. The Bering Sea and paleoceanography. Deep-Sea Res Part Ii-Top Stud Oceanogr, 52: 2080-2091
[18]
Takahashi K, Ravelo A C, Alvarez Zarikian C A, et al. 2011. Proceedings of the Integrated Ocean Drilling Program, 323. Tokyo: Integrated Ocean Drilling Program Management International, Inc. doi: 10.2204/iodp.proc.323.104.2011
[19]
Teraishi A, Suto I, Onodera J, et al. 2013. Diatom, silicoflagellate and ebridian biostratigraphyand paleoceanography in IODP 323 Hole U1343E at the Bering slope site. Deep-Sea Res Part Ii-Top Stud Oceanogr, doi: 10.1016/j.dsr2.2013.03.026
[20]
Underwood M B, Hathon E G. 1989. Provenance and dispersal of muds south of the Aleutian arc, north Pacific Ocean. Geo-Mar Lett, 9: 67-75
[21]
VanLaningham S, Pisias N G, Duncan R A, et al. 2009. Glacial-interglacial sediment transport to the Meiji Drift, northwest Pacific Ocean: Evidence for timing of Beringian outwashing. Earth Planet Sci Lett, 277: 64-72
[22]
Wan S M, Li A C, Clift P D, et al. 2006. Development of the East Asian summer monsoon: Evidence from the sediment record in the South China Sea since 8.5 Ma. Paleogeogr Paleoclimatol Paleoecol, 241: 139-159
[23]
Wan S M, Li A C, Clift P D, et al. 2007. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Paleogeogr Paleoclimatol Paleoecol, 254: 561-582
[24]
Wan S M, Tian J, Steinke S, et al. 2010. Evolution and variability of the East Asian summer monsoon during the Pliocene: Evidence from clay mineral records of the South China Sea. Paleogeogr Paleoclimatol Paleoecol, 293: 237-247
[25]
Wang P X, Tian J, Cheng X R, et al. 2003. Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology, 31: 239-242
[26]
Zhang Q, Chen M H, Zhang L L, et al. 2014. Variations in the radiolarian assemblages in the Bering Sea since Pliocene and their implications for paleoceanography. Paleogeogr Paleoclimatol Paleoecol, 410: 337-350
[27]
Chekhovich V D, Kovalenko D V, Ledneva G V. 1999. Cenozoic history of the Bering Sea and its northwestern margin. Isl Arc, 8: 168-180
[28]
Chen M H, Zhang Q, Zhang L L, et al. 2014. Stratigraphic distribution of the radiolaria Spongodiscus biconcavus Haeckel at IODP Site U1340 in the Bering Sea and its paleoceanographic significance. Paleoworld, 23: 90-104
[29]
Clark P U, Archer D, Pollard D, et al. 2006. The middle Pleistocene transition: Characteristics, mechanisms, and implications for long-term changes in atmospheric PCO2. Quat Sci Rev, 25: 3150-3184
[30]
Coachman L K, Whitledge T E, Goering J J. 1999. Silica in Bering Sea deep and bottom water. In: Loughlin T R, Ohtani K, eds. The Physical Oceanography of the Bering Sea. Fairbanks: University of Alaska Sea Grant. 285-309
[31]
Diekmann B, Petschick R, Gingele F X, et al. 1996. Clay mineral fluctuations in late Quaternary of the southeastern South Atlantic: Implications for past changes of deepwater advection. In: Wefer G, Berger W H, Siedler G, et al., eds. The South Atlantic: Present and Past Circulation. Berlin: Springer. 621-644
[32]
Ehrmann W. 1998. Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Paleogeogr Paleoclimatol Paleoecol, 139: 213-231
[33]
Ehrmann W, Setti M, Marinoni L. 2005. Clay minerals in Cenozoic sediments off Cape Roberts (McMurdo Sound, Antarctica) reveal palaeoclimatic history. Paleogeogr Paleoclimatol Paleoecol, 229: 187-211
[34]
EPCIA Community. 2004. Eight glacial cycles from an Antarctic ice core. Nature, 429: 623-628
[35]
Franke D, Ehrmann W. 2010. Neogene clay mineral assemblages in the AND-2A drill core (McMurdo Sound, Antarctica) and their implications for environmental change. Paleogeogr Paleoclimatol Paleoecol, 286: 55-65
[36]
Gardner J V, Dean W E, Vallier T L. 1980. Sedimentology and geochemistry of surface sediments, outer continental shelf, southern Bering Sea. Mar Geol, 35: 299-329
[37]
Gingele F X. 1996. Holocene climatic optimum in Southwest Africa—Evidence from the marine clay mineral record. Paleogeogr Paleoclimatol Paleoecol, 122: 77-87
[38]
Gingele F X, Müller P M, Schneider R R. 1998. Orbital forcing of freshwater input in the Zaire Fan area—Clay mineral evidence from the last 200 kyr. Paleogeogr Paleoclimatol Paleoecol, 138: 17-26
[39]
Hood D W. 1983. The Bering Sea. In: Ketchum B H, ed. Estuaries and Enclosed Seas. Amsterdam: Elsevier Science Publishing. 337-373
[40]
Jacobs M B, Hays J D. 1972. Paleo-climatic events indicated by mineralogical changes in deep-sea sediments. J Sediment Res, 42: 889-898
[41]
Jansen J, Kuijpers A, Troelstra S. 1986. A mid-Brunhes climatic event: Long-term changes in global atmosphere and ocean circulation. Science, 232: 619-622
[42]
Jeong G Y, Yoon H I, Lee S Y. 2004. Chemistry and microstructures of clay particles in smectite-rich shelf sediments, South Shetland Islands, Antarctica. Mar Geol, 209: 19-30
[43]
Kent D, Opdyke N D, Ewing M. 1971. Climate change in the North Pacific using ice-rafted detritus as a climatic indicator. Geo Soc Am Bull, 82: 2741-2754
[44]
Knebel H J, Creager J S. 1973. Yukon River: Evidence for extensive migration during the Holocene transgression. Science, 179: 1230-1232
[45]
Ling H Y. 1992. Late Neogene silicoflagellates and ebridians from Leg 128, Sea of Japan. In: Pisciotto K A, Ingle J C, Jr von Breymann M T, et al., eds. Proceedings of the Ocean Drilling Program. Scientific Results 127/128. College Station: Ocean Drilling Program. 237-248
[46]
Lisiecki L E, Raymo M E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records, Paleoceanography, 20: PA1003, doi: 10.1029/2004PA001071
[47]
Liu J G, Li T G, Xiang R et al. 2013. Influence of the Kuroshio Current intrusion on Holocene environmental transformation in the South China Sea. Holocene, 23: 850-859
[48]
Liu Z F, Trentesaux A, Clemens S C, et al. 2003. Clay mineral assemblages in the northern South China Sea: Implications for East Asian monsoon evolution over the past 2 million years. Mar Geol, 201: 133-146
[49]
Liu Z F, Wang H, Hantoro W S. 2012. Climatic and tectonic controls on chemical weathering in tropical Southeast Asia (Malay Peninsula, Borneo, and Sumatra). Chem Geol, 291: 1-12
[50]
M?rz C, Schnetger B, Brumsack H J. 2013. Nutrient leakage from the North Pacific to the Bering Sea (IODP Site U1341) following the onset of Northern Hemispheric Glaciation? Paleoceanography, 28: 68-78
[51]
Maslin M A, Haug G H, Sarnthein M, et al. 1996. The progressive intensification of Northern Hemisphere glaciation as seen from the North Pacific. Geol Rundsch, 85: 452-465
[52]
McManus D A, Venkatarathnam K, Hopkins D M, et al. 1974. Yukon River sediment on the northernmost Bering Sea shelf. J Sediment Res, 44: 1052-1060
[53]
Moore D M, Reynolds R C J. 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford: Oxford University Press. 332
[54]
Mowatt T C, Naidu A S. 1987. A brief overview of the clay mineral assemblages in sediments of the major rivers of Alaska and adjacent Arctic Canada. In: Degens E T, Kempe S, Weibin G, eds. Transport of Carbon and Minerals in Major World Rivers, Pt. 4. Hamburg: Mitt Geol- Pal?ont Inst, University of Hamburg. 269-277
[55]
Mudelsee M, Schulz M. 1997. The Mid-Pleistocene climate transition: Onset of 100 ka cycle lags ice volume build-up by 280 ka. Earth Planet Sci Lett, 151: 117-123
[56]
Naidu A S, Creager J S, Mowatt T C. 1982. Clay mineral dispersal patterns in the North Bering and Chukchi Seas. Mar Geol, 47: 1-15
[57]
Naidu A S, Mowatt T C. 1983. Sources and dispersal patterns of clay minerals in surface sediments from the continental-shelf areas off Alaska. Geol Soc Am Bull, 94: 841-854
[58]
Naidu A S, Han M W, Mowatt T C, et al. 1995. Clay minerals as indicators of sources of terrigenous sediments, their transportation and deposition: Bering Basin, Russian-Alaskan Arctic. Mar Geol, 127: 87-104
[59]
Onodera J, Takahashi K, Nagatomo R. 2013. Diatoms, silicoflagellates, and ebridians at Site U1341 on the western slope of Bowers Ridge, IODP Expedition 323. Deep-Sea Res Part Ii-Top Stud Oceanogr, doi: 10.1016/j.dsr2.2013.03.025
[60]
Pearson C A, Mojfeld H O, Tripp R B. 1981. Tides of the eastern Bering Sea shelf. In: Hood D W, Calder J A, eds. The Eastern Bering Sea Shelf: Oceanography and Resources. Washington D C: U S Gov Print Off. 111-130
[61]
Petschick R, Kuhn G, Gingele F. 1996. Clay mineral distribution in surface sediments of the South Atlantic: Sources, transport, and relation to oceanography. Mar Geol, 130: 203-229
[62]
Ping C L, Shoji S, Ito T. 1988. Properties and classification of three volcanic ash-derived pedons from Aleutian Islands and Alaska Peninsula, Alaska. Soil Sci Soc Am J, 52: 455-462
[63]
Pisias N G, Moore Jr T C. 1981. The evolution of Pleistocene climate: A time series approach. Earth Planet Sci Lett, 52: 450-458
[64]
Raymo M E. 1994. The initiation of Northern Hemisphere glaciation. Annu Rev Earth Planet Sci, 22: 353-383
[65]
Roden G I. 1967. On river discharge into the northeastern Pacific Ocean and the Bering Sea. J Geophys Res, 72: 5613-5629
[66]
Rohling E J, Fenton M, Jorissen F J, et al. 1998. Magnitudes of sea-level lowstands of the past 500000 yr. Nature, 394: 162-165
[67]
Sancetta C, Robinson S. 1983. Diatom evidence on Wisconsin and Holocene events in the Bering Sea. Quat Res, 20: 232-245
[68]
Sancetta C L, Hausser L, Labeyrie L, et al. 1985. Wisconsin-Holocene paleoenvironment of the Bering Sea: Evidence from diatoms, pollen, oxygen isotopes and clay mineralogy. Mar Geol, 62: 55-68
[69]
Scholl D W, Buffington E C, Hopkins D M. 1968. Geologic history of the continental margin of North America in Bering Sea. Mar Geol, 6: 297-330
[70]
Scholl D W, Buffington E C, Hopkins D M, et al. 1970. The structure and origin of the large submarine canyons of the Bering Sea. Mar Geol, 8: 187-210