全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

西太平洋海山富钴结壳钙质超微化石变化与E/O界限的地质记录

, PP. 508-519

Keywords: 马尔库斯-威克海山区,麦哲伦海山区,富钴结壳,超微化石,E/O地质界限事件

Full-Text   Cite this paper   Add to My Lib

Abstract:

?选择马尔库斯-威克海山区和麦哲伦海山区的2块壳结纹层记录,进行生物地层学的精细研究,并利用钙质超微化石的生物印痕分出时代:马尔库斯-威克海山CM1D03年代为晚古新世到更新世,而麦哲伦海山CM3D06结壳年代则更久远些——白垩纪晚期(约大于70.0Ma),这表明不同海山的富钴结壳最初形成年代和富集特征具有显著的时空差异性,而不同海山结壳层内部的古微体化石组合面貌、分布特征上的差别表明有关属种对大洋不同环境的适应性差异所致.本文还利用结壳纹层中所保存的钙质超微化石种群数进行生态学研究,寻找钙质超微化石变化与古新世末至渐新世初(E/O)界限地质事件的联系,研究发现在E/O界线之交(对应CM1D03结壳的25mm和CM3D06结壳的58mm附近)生物群落发生明显演替和重组,这些生物群落在E/O界限上下的改变所形成独特的生态结构,无疑反映了西太平洋古生物群落对全球冷事件存在明显响应,也说明结壳生长过程与全球气候变化有着紧密联系.

References

[1]  马维林, 金翔龙, 钟石兰, 等. 2007. 马尔库斯海脊富钴结壳的钙质超微化石生物地层学研究. 海洋学报, 29: 174-180
[2]  武光海, 周怀阳, 张海生, 等. 2006. 中太平洋地区两个铁锰结壳的生长幕研究. 地质学报, 80: 577-588
[3]  武光海, 周怀阳, 张海生, 等. 2007. 海山铁锰结壳中反映环境氧化程度的新指标. 中国科学D辑: 地球科学, 50: 371-384
[4]  张静, 于涛, 潘家华, 等. 2007. 西北太平洋海山富钴结壳中钙质超微化石. 微体古生物学报, 24: 61-75
[5]  章伟艳, 张富元, 胡光道, 等. 2008. 中西太平洋海山形态类型与钴结壳资源分布关系. 海洋学报, 30: 76-84
[6]  朱本泽, 梁德华, 崔兆国. 2011. 西太平洋麦哲伦海山链的海山地貌及成因. 中南大学学报(自然科学版), 42: 92-98
[7]  Banakar V, Galy A, Sukumaran N, et al. 2003. Himalayan sedimentary pulses recorded by silicate detritus within a ferromanganese crust from the Central Indian Ocean. Earth Planet Sci Lett, 205: 337-348
[8]  Barrett P. 2003. Palaeoclimatology: Cooling a continent. Nature, 421: 221-223
[9]  Berggren W A, Kent D V, Flynn J J. 1985. Jurassic to Paleogene: Part 2 Paleogene geochronology and chronostratigraphy. Geol Soc London Mem, 10: 141-195
[10]  Bolli H M, Saunders J B, Perch-Nielsen K. 1989. Plankton Stratigraphy: Volume 1, Planktic Foraminifera, Calcareous Nannofossils and Calpionellids. CUP Archive
[11]  Bukry D. 1973a. Coccolith stratigraphy, eastern equatorial Pacific, Leg 16, Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project, 16: 653-711
[12]  Bukry D. 1973b. Phytoplankton stratigraphy, deep sea drilling project leg 20, western Pacific Ocean. Init Repts DSDP, 20: 307-317
[13]  Bukry D. 1975. Coccolith and silicoflagellate stratigraphy, northwestern Pacific Ocean. Deep Sea Drilling Project Leg 32. Init Repts DSDP, 32: 677-701
[14]  Bukry D. 1978. Biostratigraphy of Cenozoic marine sediment by calcareous nannofossils. Micropaleontology, 24: 44-60
[15]  Clouard V, Bonneville A. 2005. Ages of seamounts, islands, and plateaus on the Pacific plate. Special Papers-Geol Soc Am, 388: 71
[16]  Cowen J P, DeCarlo E H, MCGee D L. 1993. Calcareous nannofossil biostratigraphic dating of a ferromanganese crust from Schumann Seamount. Mar Geol, 115: 289-306
[17]  Coxall H K, Wilson P A, P?like H, et al. 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature, 433: 53-57
[18]  Dallai L, Ghezzo C, Longinelli A. 2001. Fossil hydrothermal systems tracking Eocene climate change in Antarctica. Geology, 29: 931-934
[19]  DeConto R M, Pollard D. 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421: 245-249
[20]  Dupont-Nivet G, Krijgsman W, Langereis C G, et al. 2007. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature, 445: 635-638
[21]  Edwards A, Perch-Nielsen K. 1975. Calcareous nannofossils from the southern southwest Pacific. Init Repts DSDP, 29: 469-540
[22]  Eisenhauer A, G?gen K, Pernicka E, et al. 1992. Climatic influences on the growth rates of Mn crusts during the Late Quaternary. Earth Planet Sci Lett, 109: 25-36
[23]  Elderfield H. 2002. Carbonate mysteries. Science, 296: 1618-1621
[24]  Gartner S. 1977. Nannofossils and biostratigraphy: An overview. Earth-Sci Rev, 13: 227-250
[25]  Hein J R, Bohrson W A, Schulz M S, et al. 1992. Variations in the fine-scale composition of a central Pacific ferromanganese crust: Paleoceanographic implications. Paleoceanography, 7: 63-77
[26]  James P C, Eric H D C, Donald L M. 1993. Calcareous nannofossil biostratigraphic dating of a ferromanganese crust from Schumann Seamount. Mar Geol, 115: 289-306
[27]  Janin M C. 1987a. The Imprints of Cenozoic Calcareous Nannofossils from Polymetallic Concretions: Biostratigraphic Significance for two Crusts from the Central Pacific (Line Islands Ridge and Mid-Pacific Mountains). Abh Geol, 39: 121-141
[28]  Janin M. 1987b. Micropaleontology of polymetallic concretions from the central Pacific: Clarion-Clipperton zone, Mid-Pacific Mountains, Line Islands and Tuamotu Archipelago (Eocene-Recent). Mem Soc géol FrSer, 152: 315
[29]  Jeong K, Jung H, Kang J, et al. 2000. Formation of ferromanganese crusts on northwest intertropical Pacific seamounts: Electron photomicrography and microprobe chemistry. Mar Geol, 162: 541-559
[30]  Katz M E, Miller K G, Wright J D, et al. 2008. Stepwise transition from the Eocene greenhouse to the Oligocene icehouse. Nature Geosci, 1: 329-334
[31]  Matsuoka A. 1992. Jurassic-Early Cretaceous tectonic evolution of the Southern Chichibu terrane, southwest Japan. Paleogeogr Paleoclimatol Paleoecol, 96: 71-88
[32]  McMurtry G, VonderHaar D, Eisenhauer A, et al. 1994. Cenozoic accumulation history of a Pacific ferromanganese crust. Earth Planet Sci Lett, 125: 105-118
[33]  Melnikov M E, Pulyeva I A. 1994. Ferromanganese crusts of Markus- Wake Rise and Magellan Seamounts of the Pacific Ocean (in Russian). Tikhooceanskaya Geologia, 4: 13-27
[34]  Meng J, McKenna M C. 1998. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature, 394: 364-367
[35]  Miller K G, Wright J D, Fairbanks R G. 1991. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. J Geophys Res (1978-2012), 96: 6829-6848
[36]  Okada H, Bukry D. 1980. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation. Mar Micropaleontol, 5: 321-325
[37]  Pagani M, Zachos J C, Freeman K H, et al. 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science, 309: 600-603
[38]  Pearson P N, Foster G L, Wade B S. 2009. Atmospheric carbon dioxide through the Eocene-Oligocene climate transition. Nature, 461: 1110-1113
[39]  Pearson P N, McMillan I K, Wade B S, et al. 2008. Extinction and environmental change across the Eocene-Oligocene boundary in Tanzania. Geology, 36: 179-182
[40]  Prothero D R. 1994. The late Eocene-Oligocene extinctions. Annu Rev Earth Planet Sci, 22: 145-165
[41]  Prothero D R. 1999. Does climatic change drive mammalian evolution. GSA Today, 9: 1-5
[42]  Retallack G J, Orr W N, Prothero D R, et al. 2004. Eocene-Oligocene extinction and paleoclimatic change near Eugene, Oregon. Geol Soc Am Bull, 116: 817-839
[43]  Ridgway K, Sweet A. 1995. Climatically induced floristic changes across the Eocene-Oligocene transition in the northern high latitudes, Yukon Territory, Canada. Geol Soc Am Bull, 107: 676-696
[44]  Roth P. 1973. Calcareous nannofossils. Init Repts DSDP, 17: 695-795
[45]  Salamy K A, Zachos J C. 1999. Latest Eocene-Early Oligocene climate change and Southern Ocean fertility: Inferences from sediment accumulation and stable isotope data. Paleogeogr Paleoclimatol Paleoecol, 145: 61-77
[46]  Shumenko S. 1987. Calcareous Nanoplankton(in Russia). Moscow: Nedra
[47]  Tripati A, Backman J, Elderfield H, et al. 2005. Eocene bipolar glaciation associated with global carbon cycle changes. Nature, 436: 341-346
[48]  Van Andel T H. 1975. Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments. Earth Planet Sci Lett, 26: 187-194
[49]  Williams M. 2007. Deep-time perspectives on climate change: Marrying the signal from computer models and biological proxies. Geol Soc London
[50]  Zachos J, Pagani M, Sloan L, et al. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686-693
[51]  Zachos J C, Dickens G R, Zeebe R E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451: 279-283
[52]  Zachos J C, Quinn T M, Salamy K A. 1996. High-resolution (104 years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition. Paleoceanography, 11: 251-266
[53]  Zhang H S, Zhao J, Han Z B, et al. 2013. Calcareous nannofossils and molecular fossils in cobalt-rich crusts and their response to the P/E global event. Acta Geol Sin, 87: 1264-1274
[54]  刘怀宝, Watkins D K. 2004. 北美西部内陆海盆Niobrara组的钙质超微化石及其环境意义Ⅱ: 古环境研究. 高校地质学报, 10: 26-38
[55]  刘志飞, Trentesaux A, Clemens S C, 等. 2003. 南海北坡ODP1146站第四纪粘土矿物记录: 洋流搬运与东亚季风演化. 中国科学D辑: 地球科学, 33: 271-280
[56]  潘家华, 张静, 刘淑琴, 等. 2007. 西北太平洋富钴结壳的钙质超微化石地层学研究意义. 地球化学, 28: 411-417
[57]  苏新, 马维林, 程振波. 2004. 中太平洋海山区富钴结壳的钙质超微化石地层学研究. 地球科学—中国地质大学学报, 29: 141-147
[58]  拓守挺, 刘志飞, 成鑫荣, 等. 2006. 南大西洋渐新世初碳酸盐记录(ODP 1263站). 地球科学进展, 21: 800-805
[59]  武光海, 周怀阳, 杨树锋, 等. 2001a. 富钴结壳生长过程中铁锰氧化物矿物组合的变化. 矿物学报, 21: 137-143
[60]  武光海, 周怀阳, 陈汉林. 2001b. 大洋富钴结壳研究现状与进展. 高校地质学报, 7: 379-389
[61]  武光海, 周怀阳, 杨树锋, 等. 2003. 中太平洋海山演化史及其与富钴结壳的关系. 海洋地质动态, 19: 5-8
[62]  Koppers A P, Morgan J P, Morgan J W, et al. 2001. Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails. Earth Planet Sci Lett, 185: 237-252
[63]  Lear C H, Bailey T R, Pearson P N, et al. 2008. Cooling and ice growth across the Eocene-Oligocene transition. Geology, 36: 251-254
[64]  Liu Z, Alain T, Steven C C, et al. 2003. Quaternary clay mineralogy in the northern South China Sea (ODP Site 1146)—Implications for oceanic current transport and East Asian monsoon evolution. Sci China Ser-D Earth Sci, 46: 1223-1235
[65]  Liu Z, Pagani M, Zinniker D, et al. 2009. Global cooling during the Eocene-Oligocene climate transition. Science, 323: 1187-1190
[66]  Müller R D, Roest W R, Royer J Y, et al. 1997. Digital isochrons of the world''s ocean floor. J Geophys Res (1978-2012), 102: 3211-3214
[67]  Marino M, Flores J A. 2002. Middle Eocene to early Oligocene calcareous nannofossil stratigraphy at Leg 177 Site 1090. Mar Micropaleontol, 45: 383-398
[68]  Martini E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In: Proceedings of the Second Planktonic Conference, Roma. 739-785
[69]  Martini E, Worsley T. 1970. Standard Neogene calcareous nannoplankton zonation. Nature, 225: 289-290
[70]  Martini E, Worsley T. 1971. Tertiary calcareous nannoplankton from the western equatorial Pacific. Init Repts DSDP, 7: 1471-1511

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133