全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

东海冲绳海槽西部陆坡甲烷渗漏发育的孔隙水地球化学证据

DOI: 10.1007/s11430-014-5034-x, PP. 676-687

Keywords: 甲烷厌氧氧化,甲烷渗漏,孔隙水,冲绳海槽

Full-Text   Cite this paper   Add to My Lib

Abstract:

?甲烷渗漏及相伴随的甲烷厌氧氧化活动(AOM)能造成孔隙水中多种地球化学参数的异常.本研究开展了冲绳海槽西部陆坡两个站位孔隙水地球化学研究,研究发现两个孔存在甲烷渗漏及相关的地球化学异常,与背景孔相对比,甲烷渗漏A孔和C孔孔隙水存在随深度增加硫酸盐浓度线性梯度亏损、甲烷浓度显著增加和硫化氢浓度增加、总碱度浓度增加等特征,上述异常高值特征指示了两个研究站位A孔与C孔甲烷厌氧氧化的发育,基于硫酸盐浓度线性梯度亏损,利用硫酸盐浓度外推法识别甲烷-硫酸盐界面(SMI)深度分别为4.9和5.4mbsf,该较浅的SMI分布和线性的硫酸盐浓度亏损指示了下伏地层中较强的甲烷通量和强烈的甲烷厌氧氧化.

References

[1]  方银霞, 黎明碧, 金翔龙, 等. 2003. 东海冲绳海槽天然气水合物的形成条件. 科技通报, 19: 1-5
[2]  郭军华, 吴时国, 徐宁, 等. 2007. 冲绳海槽西侧陆坡及其邻区天然气水合物成藏构造特征. 海洋与湖沼, 38: 432-437
[3]  蒋少涌, 凌洪飞, 杨竞红, 等. 2003. 海洋浅表层沉积物和孔隙水的天然气水合物地球化学异常识别标志. 海洋地质与第四纪地质, 23: 87-94
[4]  蒋少涌, 杨涛, 薛紫晨, 等. 2005a. 南海北部海区海底沉积物中孔隙水的Cl-和SO42-浓度异常特征及其对天然气水合物的指示意义. 现代地质, 19: 45-54
[5]  蒋少涌, 杨涛, 葛璐, 等. 2005b. 海洋沉积物孔隙水硫酸盐浓度和碳同位素对天然气水合物的指示. 地球学报, 26(增刊): 190-191
[6]  凌洪飞, 蒋少涌, 倪培, 等. 2001. 沉积物孔隙水地球化学异常:天然气水合物存在的指标. 海洋地质动态, 17: 34-37
[7]  陆红锋, 刘坚, 陈芳, 等. 2012. 南海东北部硫酸盐还原-甲烷厌氧氧化界面-海底强烈甲烷渗漏的记录. 海洋地质与第四纪地质, 32: 93-98
[8]  卢振权, 龚建明, 吴必豪, 等. 2003. 东海天然气水合物的地球化学标志与找矿远景. 海洋地质与第四纪地质, 23: 77-81
[9]  栾锡武, 秦蕴珊. 2005. 冲绳海槽宫古段西部槽底海底气泉的发现. 科学通报, 50: 802-810
[10]  杨涛, 蒋少涌, 葛璐, 等. 2006. 南海北部陆坡西沙海槽XS-01站位沉积物孔隙水的地球化学特征及其对天然气水合物的指示意义. 第四纪研究, 26: 442-448
[11]  杨涛, 蒋少涌, 葛璐, 等. 2009. 南海北部神狐海域浅表层沉积物中孔隙水的地球化学特征及其对天然气水合物的指示意义. 科学通报, 54: 3231-3240
[12]  杨涛, 蒋少涌, 葛璐, 等. 2013. 南海北部琼东南盆地HQ-1PC沉积物孔隙水的地球化学特征及其对天然气水合物的指示意义. 中国科学:地球科学, 43: 329-338
[13]  赵汗青, 吴时国, 徐宁, 等. 2006. 东海与泥底辟构造有关的天然气水合物初探. 现代地质, 20: 115-122
[14]  Alperin M J, Hoehler T M. 2009. Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates. Am J Sci, 309: 869-957
[15]  Boetius A, Ravenschlag K, Schubert C J, et al. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407: 623-626
[16]  Borowski W S, Paull C K, Ussler III W. 1996. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydfate. Geology, 24: 655-658
[17]  Borowski W S, Paull C K, Ussler III W. 1999. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates. Mar Geol, 159: 131-154
[18]  Borowski W S, Rodriguez N M, Paull C K, et al. 2013. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record? Mar Pet Geol, 43: 381-395
[19]  Caldwell S L, Laidler J R, Brewer E A, et al. 2008. Anaerobic oxidation of methane: Mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ Sci Technol, 42: 6791-6799
[20]  Dickens G R, Snyder G T. 2009. Interpreting upward methane flux from marine pore water profiles. Fire in the Ice: 7-10
[21]  栾锡武, 岳保静, 鲁银涛. 2006. 东海天然气水合物的地震特征. 海洋地质与第四纪地质, 26: 91-99
[22]  孟宪伟, 刘保华, 石学法, 等. 2000. 冲绳海槽中段西陆坡下缘天然气水合物存在的可能性分析. 沉积学报, 18: 629-633
[23]  邬黛黛, 叶瑛, 吴能友, 等. 2009. 琼东南盆地与甲烷渗漏有关的早期成岩作用和孔隙水化学组分异常. 海洋学报, 31: 86-96
[24]  邬黛黛, 吴能友, 付少英, 等. 2010. 南海北部东沙海域水合物区浅表层沉积物的地球化学特征. 海洋地质与第四纪地质, 30: 41-51
[25]  吴庐山, 杨胜雄, 梁金强, 等. 2010. 南海北部琼东南海域HQ-48PC站位地球化学特征及对天然气水合物的指示意义. 现代地质, 24: 534-544
[26]  吴庐山, 杨胜雄, 梁金强, 等. 2013. 南海北部神狐海域沉积物中孔隙水硫酸盐梯度变化特征及其对天然气水合物的指示意义. 中国科学: 地球科学, 43: 339-350
[27]  徐宁, 吴时国, 王秀娟, 等. 2006. 东海冲绳海槽陆坡天然气水合物的地震学研究. 地球物理学进展, 21: 564-571
[28]  杨涛, 蒋少涌, 杨竞红, 等. 2005. 孔隙水中NH4+和HPO42-浓度异常: 一种潜在的天然气水合物地球化学勘查新指标. 现代地质, 19: 55-60
[29]  J?rgensen B B, Weber A, Zopfi J. 2001. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments. Deep-Sea Res Part I-Oceanogr Res Pap, 48: 2097-2120
[30]  Joseph C, Campbell K A, Torres M E, et al. 2013. Methane-derived authigenic carbonates from modern and paleoseeps on the Cascadia margin: Mechanisms of formation and diagenetic signals. Paleogeogr Paleoclimatol Paleoecol, 390: 52-67
[31]  Joye S, Boetius A, Orcutt B, et al. 2004. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem Geol, 205: 219-238
[32]  Kastner M, Claypool G, Robertson G. 2008a. Geochemical constraints on the origin of the pore fluids and gas hydrate distribution at Atwater Valley and Keathley Canyon, northern Gulf of Mexico. Mar Pet Geol, 25: 860-872
[33]  Kastner M, Torres M E, Solomon E A, et al. 2008b. Marine pore fluid profiles of dissolved sulfate: Do they reflect in situ methane fluxes? Fire in the Ice, 8: 6-8
[34]  Kennett J P, Cannariato K G, Hendy I L, et al. 2003. Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis. Washington D C: American Geophysical Union. 216
[35]  Mazumdar A, Joao H M, Peketi A, et al. 2012. Geochemical and geological constraints on the composition of marine sediment pore fluid: Possible link to gas hydrate deposits. Mar Pet Geol, 38: 35-52
[36]  Mazumdar A, Peketi A, Joao H M, et al. 2014. Pore-water chemistry of sediment cores off Mahanadi Basin, Bay of Bengal: Possible link to deep seated methane hydrate deposit. Mar Pet Geol, 49: 162-175
[37]  Meister P, Liu B, Ferdelman T G, et al. 2013. Control of sulphate and methane distributions in marine sediments by organic matter reactivity. Geochim Cosmochim Acta, 104: 183-193
[38]  Michaelis W, Seifert R, Nauhaus K, et al. 2002. Microbial reefs in the black sea fueled by anaerobic oxidation of methane. Science, 297: 1013-1015
[39]  Niew?hner C, Hensen C, Kasten S, et al. 1998. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochim Cosmochim Acta, 62: 455-464
[40]  Orphan V J, Hinrichs K U, Ussler III W, et al. 2001. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol, 67: 1922-1934
[41]  Pohlman J W, Riedel M, Bauer J E, et al. 2013. Anaerobic methane oxidation in low-organic content methane seep sediments. Geochim Cosmochim Acta, 108: 184-201
[42]  Reeburgh W S. 2007. Oceanic methane biogeochemistry. Chem Rev, 107: 486-513
[43]  Regnier P, Dale A W, Arndt S, et al. 2011. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective. Earth-Sci Rev, 106: 105-130
[44]  Richards F A. 1965. Anoxic basins and fjords. In: Riley J P, Skirrow G, eds. Chemical Oceanography. New York: Academic Press. 611-645
[45]  Sakai H, Gamo T, Kim E S, et al. 1990. Venting of carbon dioxide-rich fluid and hydrate formation in mid-Okinawa Trough backarc basin. Science, 248: 1093-1096
[46]  Sibuet J C, Deffontaines B, Hsu S K, et al. 1998. Okinawa trough backarc basin: Early tectonic and magmatic evolution. J Geophys Res, 103: 30245-30267
[47]  Suess E, Torres M E, Bohrmann G, et al. 1999. Gas hydrate destabilization: Enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth Planet Sci Lett, 170: 1-15
[48]  Tang Y, Jin X L, Fang Y X. 2006. Characteristics of gas hydrate stability zone and resource evaluation in Okinawa Trough. Mar Sci Bull, 8: 40-48
[49]  Treude T, Niggemann J, Kallmeyer J, et al. 2005. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin. Geochim Cosmochim Acta, 69: 2767-2779
[50]  Ujiie Y, Ujiie H, Taira A, et al. 2003. Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21000 years: Evidence from planktonic foraminifera. Mar Micropaleontol, 49: 335-364
[51]  Xu N, Wu S, Shi B, et al. 2009. Gas hydrate associated with mud diapirs in southern Okinawa Trough. Mar Pet Geol, 26: 1413-1418
[52]  Yin P, Berné S, Vagner P, et al. 2003. Mud volcanoes at the shelf margin of the East China Sea. Mar Geol, 194: 135-149
[53]  Expedition 311Scientists. 2005. Cascadia Margin Gas Hydrates. IODP Preliminary Report 311. doi: 10:2204/iodp.pr.311.2005
[54]  Gieskes J, Mahn C, Day S, et al. 2005. A study of the chemistry of pore fluids and authigenic carbonates in methane seep environments: Kodiak Trench, Hydrate ridge, Monterey Bay, and Eel River Basin. Chem Geol, 220: 329-345
[55]  Glasby G P, Notsu K. 2003. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: An overview. Ore Geol Rev, 23: 299-339
[56]  Haacke R R, Westbrook G K, Hyndman R D. 2007. Gas hydrate, fluid flow and free gas: Formation of the bottom-simulating reflector. Earth Planet Sci Lett, 261: 407-420
[57]  Hach Company. 2005. DR5000 spectrophotometer procedures manual. 2nd ed
[58]  Hach Company. 2006. Digital Titrator titration procedures. 41-48
[59]  Heinrich S M, Reeburgh W S. 1987. Anaerobic minerlization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol J, 5: 191-237
[60]  Hensen C, Zabel M, Pfeifer K, et al. 2003. Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments. Geochim Cosmochim Acta, 67: 2631-2647
[61]  Hesse R. 2003. Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface: What have we learned in the past decade? Earth-Sci Rev, 61: 149-179
[62]  Inagaki F, Kuypers M M, Tsunogai U, et al. 2006. Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system. Proc Natl Acad Sci USA, 103: 14164-14169
[63]  J?rgensen B B, Kasten S. 2006. Sulfur cycling and methane oxidation. In: Schulz H D, Zabel M, eds. Marine Geochemistry. 2nd ed. Berlin: Springer Verlag. 271-309

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133