全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一个求解云滴谱相对离散度的方法

DOI: 10.1007/s11430-015-5059-9, PP. 639-648

Keywords: 云滴谱,伽马分布,相对离散度,形状参数,平均半径

Full-Text   Cite this paper   Add to My Lib

Abstract:

?在双参数云微物理方案中,云滴谱的相对离散度(ε)或者形状参数(μ,ε2=1/(μ=1))通常假定为常数或利用统计关系求得.观测显示常数假定和统计关系并不适合所有的实际情况.为此,我们根据云微物理学和伽马函数的性质,得到求解云滴平均半径和云滴谱形状参数的方程.利用云滴平均半径、体积半径和它们的比求解云滴谱形状参数方程,可以得到云滴谱伽马分布的形状参数、相对离散度和云滴的谱分布.这个方法得到的是解析解.我们进一步利用观测的云滴谱资料检验了云滴谱形状参数的方程,结果表明该方法是可行的.同时,把这个方法应用到WRF模式的双参数云微物理方案中,进一步检验这个方法的可行性.模式结果显示新方法对降水的模拟有一定改善.说明该方法是可行的,可以应用到双参数云微物理方案中.

References

[1]  Cohard J M, Pinty J P. 2000. A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Q J R Meteorol Soc, 126: 1815-1842
[2]  Cotton W R, Anthes R A. 1989. Storm and Cloud Dynamics. London: Academic Press. 883
[3]  Curry J A, Hobbs P V, King M D, et al. 2000. FIRE arctic clouds experiment. Bull Amer Meteorol Soc, 81: 5-29
[4]  Ferrier B S. 1994. A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J Atmos Sci, 51: 249-280
[5]  IPCC. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, In: Solomon S, Qin D, Manning M, et al, eds. New York: Cambridge University Press
[6]  Jiang H L, Cotton W R, Pinto J O, et al. 2000. Cloud resolving simulations of mixed-phase arctic stratus observed during BASE: Sensitivity to concentration of ice crystals and large-scale heat and moisture advection. J Atmos Sci, 57: 2105-2117
[7]  Jiang H L, Feingold G, Cotton W R, et al. 2001. Large-eddy simulation of entrainment of cloud condensation nuclei into the arctic boundary layer: May 18, 1998 FIRE/SHEBA case study. J Geophys Res, 106: 15113-15122
[8]  Khvorostyanov V I, Curry J A. 1999a. Towards the theory of stochastic condensation in clouds. Part I: A general kinetic equation. J Atmos Sci, 56: 3985-3996
[9]  Khvorostyanov V I, Curry J A. 1999b. Towards the theory of stochastic condensation in clouds. Part II: Analytical solutions of the gamma distribution type. J Atmos Sci, 56: 3997-4013
[10]  Kogan Y L, Martin W J. 1994. Parameterization of bulk condensation in numerical cloud modeles. J Atmos Sci, 51: 1728-1739
[11]  Kogan Y L, Belochitski A, 2012. Parameterization of cloud microphysics based on full integral moments. J Atmos Sci, 69: 2229-2242
[12]  Liu Y G, Daum P H. 2002. Indirect warming effect from dispersion forcing. Nature, 419: 580-581
[13]  Liu Y G, Daum P H, McGraw R, et al. 2006a. Parameterization of the autoconversion process. Part II: Generalization of Sundqvist-type parameterizations. J Atmos Sci, 63: 1103-1109
[14]  Liu Y G, Daum P H, McGraw R, et al. 2006b. Generalized threshold function accounting for effect of relative dispersion on threshold behavior of autoconversion process. Geophys Res Lett, 33: L11804, doi: 10.1029/2005GL025500
[15]  Lohmann U, McFarlane N, Levkov L, et al. 1999. Comparing different cloud schemes of a single column model by using mesoscale forcing and nudging technique. J Clim, 12: 438-461
[16]  Lu M L, Conant W C, Jonsson H H, et al. 2007. The marine stratus/stratocumulus experiment (MASE): Aerosol-cloud relationship in marine stratocumulus. J Geophys Res, 112: D10209, doi: 10.1029/2006JD07985
[17]  Ma J Z, Chen Y, Wang W, et al. 2010. Strong air pollution causes widespread haze-cloud over China. J Geophys Res, 115: D18204, doi: 10.1029/2009JD013065
[18]  Martin G M, Johnson D W, Spice A. 1994. The measurement and parameterization of effective radius of droplets in the warm stratocumulus clouds. J Atmos Sci, 51: 1823-1842
[19]  Mason B J. 1971. Physics of Clouds. Oxford: Clarendon Press. 481
[20]  Meyers M P, Walko R L, Harrington J Y, et al. 1997. New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos Res, 45: 3-39
[21]  Milbrandt J A, Yau M K. 2005a. A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J Atmos Sci, 62: 3051-3064
[22]  Milbrandt J A, YauM K. 2005b. A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J Atmos Sci, 62: 3065-3081
[23]  Morrison H, Curry J A, Khvorostyanov V I. 2005. A new double-moment microphysics parameterization for application in cloud and climate models Part I: Description. J Atmos Sci, 62: 1665-1677
[24]  Morrison H, Thompson G, Tatarskii V. 2009. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon Weather Rev, 137: 991-1007
[25]  Pruppacher H R, Klett J D. 1997. Microphysics of Clouds and Precipitation. London: Springer. 954
[26]  Reisner J, Rasmussen R M, Bruintjes T. 1998. Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Q J R Meteorol Soc, 124: 1071-1107
[27]  Sedunov Y S. 1974. Physics of Drop Formation in the Atmosphere. Hoboken: John Wiley& Sons. 234
[28]  Straka J M. 2009. Cloud and Precipitation Microphysics. New York: Cambridge University Press. 392
[29]  Xie X N, Liu X D, Peng Y R, et al. 2013. Numerical simulation of clouds and precipitationdepending on different relationships between aerosol andcloud droplet spectral dispersion. Tellus Ser B-Chem Phys Meteorol, 65: 19054
[30]  Xu K M, Randall D A. 1996. Explicit simulation of cumulus ensembles with the GATE Phase III data: Comparison with observations. J Atmos Sci, 53: 3710-3736
[31]  Zhao C S, Tie X X, Brasseur G, et al. 2006. Aircraft measurements of cloud droplet spectral dispersion and implications for indirect aerosol radiative forcing. Geophys Res Lett, 33: L16809, doi: 10.1029/2006GL026653

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133