全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

自然降水变异对人工增雨效果评估的影响

, PP. 1011-1019

Keywords: 人工增雨效果,自然降水变异,bootstrap,数据删失模型,检出下限

Full-Text   Cite this paper   Add to My Lib

Abstract:

?效果评估是人工增雨试验中的关键问题之一.降水在时空分布上往往存在自然变异,使得精确估算自然降水量、评估人工增雨的效果变得比较困难.基于吉林省1997~2007年4~7月飞机人工增雨作业的宏观记录资料和降水量日值数据,运用现代统计模拟方法“bootstrap”分析自然降水变异,并设法控制其对人工增雨效果评估的影响.研究表明,自然降水变异的影响有三种控制方法:增加催化样本量、删除异常点和选取降水结构相似的对比单元.催化样本量越大,自然降水变异的影响和催化效果的检出下限越小.催化样本量为470时,若要检出20%~30%的增雨效果,置信度可达90%.在单次作业的效果检验中,删除强异常点和选取降水结构相似的对比单元,建立数据删失模型,能够有效地控制自然降水变异的影响,提高人工增雨效果评估的效率.结果显示,吉林省人工增雨相对效果的分布主要集中在0~30%,平均11.95%.人工增雨作业的效果,和降水量大小没有直接联系,而其波动幅度随着降水量增加而逐渐越小.

References

[1]  房彬, 班显秀, 肖辉. 2009. 辽宁人工增雨试验区功效研究. 高原气象, 28: 586-593
[2]  王婉. 2008. 非随机化人工增雨试验统计检验基本问题研究和方案改进. 北京: 中国气象科学研究院
[3]  薛毅, 陈立萍. 2007. 统计建模与R软件. 北京: 清华大学出版社
[4]  叶家东, 程克明, 曾光平. 1981. 闽中雨季区域雨量统计特性及人工影响的效果. 气象学报, 39: 474-482
[5]  叶家东, 罗幸贫, 曾光平, 等. 1984. 随机试验功效的数值分析. 气象学报, 42: 69-79
[6]  岳朝龙, 黄永兴. 2009. SAS与现代经济统计分析. 合肥: 中国科学技术大学出版社
[7]  郑国光, 陈跃, 王鹏飞, 等. 2005. 人工影响天气中的关键问题. 北京: 气象出版社
[8]  曾光平, 方仕珍, 肖锋. 1991. 1975~1986年古田水库人工降雨效果总分析. 大气科学, 15: 97-108
[9]  曾光平, 刘峻. 1993. 人工降水试验效果检验的统计模拟方法研究. 气象学报, 51: 241-247
[10]  曾光平, 张长安, 李茂仑. 2000. 人工降水方案统计设计的统计数值模拟方法研究. 大气科学, 24: 131-141
[11]  曾光平, 郑行照, 方仕珍, 等. 1994. 非随机化人工降雨试验效果评价方法研究. 大气科学, 18: 233-242
[12]  Abbas A, Mustafa A. 1999. Syrian rain enhancement project (1991-1998). In: Secretariat of World Meteorological Organization, eds. 7th WMO Scientific Conference on Weather Modification. Chiang Mai, Thailand. 118-120
[13]  Anthony R O, William L W. 1975. On the effect of natural rainfall variability and measurement errors in the detection of seeding effect. J Appl Meteorol, 14: 929-938
[14]  Beare S, Chambers R, Peake S. 2010. Accounting for spatiotemporal variation of rainfall measurements when evaluating ground-based methods of weather modification. Centre for Statistical and Survey Methodology, University of Wollongong, Working Paper
[15]  Dikta G, Kvesic M, Schmidt C. 2006. Theory and Methods-Bootstrap Approximations in model checks for binary data. J Am Stat Assoc, 101: 521-530
[16]  Gabriel K R, Chin F H. 1980. Power study of re-randomization test. In: Secretariat of World Meteorological Organization, eds. 3rd ed. WMO Scientific Conference on Weather Modification. Clemont- Ferrand, France. 21-25
[17]  Gabriel K R. 1979. Some statistical issues in weather experimentation. Commun Stat-Theor M, 8: 975-1015
[18]  Geerts B, Miao Q, Yang Y, et al. 2010. An airborne profiling radar study of the impact of Glaciogenic cloud seeding on snowfall from winter orographic clouds. J Atmos Sci, 67: 3286-3302
[19]  Gerhard D, Sundarraman S, Thorsten W. 2013. Bootstrap based model checks with missing binary response data. Stat Probabil Lett, 83: 219
[20]  Hsu C F, Gabriel K R, Changnon S A. 1981. Statistical techniques and key issues for the evaluation of operational weather modification. J Weather Modif, 13: 195-199
[21]  John A F, William L W, Robert W B, et al. 1981. Comments on “FACE rainfall results: Seeding effect or natural variability?” J Appl Meteorol, 20: 98-107
[22]  Kempthorne O, Doerfler T E. 1969. The behavior of some significance tests under experimental randomization. Biom, 56: 231-248
[23]  Manton M J, Warren L, Kenyon S L, et al. 2011. A confirmatory snowfall enhancement project in the snowy mountains of Australia. Part I: project design and response variables. J Appl Meteorl Climatol, 50: 1432-1447
[24]  Ronald C, Larry M P, Wesley J. 1992. Case-deletion diagnostics for mixed models. Technometrics, 34: 38-45
[25]  Rosenfeld D, Axisa D, Woodley W L, et al. 2010. A quest for effective hygroscopic cloud seeding. J Appl Meteorl Climatol, 49: 1548-1562
[26]  Salvam A M, Murty A S R, Murty B V R. 1979. Numerical simulation of cloud seeding experiments in Maherashtra State, India. J Weather Modif, 11: 116-140
[27]  Sarah A T, Roelof T B, Courtney W, et al. 2012. The Queensland cloud seeding research program. Bull Amer Meteorol Soc, 93: 75-90
[28]  Schickedanz P T, Huff F A. 1971. The design and evaluation of rainfall modification experiments. J Appl Meteorol, 10: 502-514
[29]  Xue L, Hashimoto A, Murakami M, et al. 2013. Implementation of a silver iodide cloud an airborne profiling radar study of the impact of glaciogenic cloud seeding seeding parameterization in WRF. Part I: Model description and idealized 2D sensitivity tests. J Appl Meteorl Climatol, 52: 1433-1457

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133