全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

飞秒激光剥蚀多接收等离子体质谱分析硫化物中Pb同位素组成研究

DOI: 10.1007/s11430-015-5095-5, PP. 1285-1293

Keywords: 飞秒激光剥蚀,多接收等离子体质谱,铅同位素,铅含量,硫化物

Full-Text   Cite this paper   Add to My Lib

Abstract:

?开展了利用飞秒激光剥蚀多接收等离子体质谱进行硫化物矿物中Pb同位素原位微区分析技术研究,采用高温活化活性炭过滤载气中的Hg,使得Hg背景信号降低了48%,进一步降低检出限,分析过程的分馏效应及质量歧视效应校正采用内标Tl和外标NISTSRM610相结合方式进行.利用研究建立的方法分析了都龙锡锌铟多金属矿带中的黄铜矿、黄铁矿和闪锌矿中Pb同位素组成.结果表明,该矿区不同硫化物矿物间及同一种硫化物不同颗粒间的Pb含量差异可达1000多倍,黄铁矿具有相对较高的Pb含量,而闪锌矿的Pb含量则偏低.高Pb含量的黄铁矿具有变化小且相对均一的Pb同位素组成,而低Pb含量的闪锌矿的Pb同位素组成变化极大,一方面它可能较易受后期热液叠加作用而改变,另一方面由于闪锌矿中铅含量较低,则其中所含微量铀的影响显著加大,因而由铀放射性衰变随时间积累起来的放射成因铅也可能是造成其Pb含量和同位素组成分布范围较大的原因之一.Pb含量高于10ppm的黄铜矿和闪锌矿颗粒显示了一致的Pb同位素分布,而Pb含量高于100ppm的所有硫化物颗粒均具有误差范围内一致的Pb同位素组成,且与化学法得到的结果误差范围内吻合,表明本研究方法的数据可靠.本研究还表明,只有Pb含量相对较高的硫化物矿物中的Pb同位素组成才能较真实地记录其成矿物质来源.而Pb含量偏低的硫化物矿物中的Pb同位素组成则可能受样品中微量铀的影响而具有高放射成因铅同位素比值,也可能代表了后期交代流体改造后的Pb同位素组成.

References

[1]  常向阳, 朱炳泉. 1997. 铅同位素方法应用于化探找矿评价. 矿物岩石地球化学通报, 16: 245-249
[2]  常向阳, 朱炳泉, 邹日. 2000. 铅同位素系统剖面化探与隐伏矿深度预测: 以云南金平龙勃河铜矿为例. 中国科学D辑: 地球科学, 30: 33-39
[3]  陈英业. 2013. 云南都龙锡矿曼家寨西矿段锡锌多金属矿. 云南地质, 32: 296-299
[4]  Malherbe J, Claverie F, Alvarez A, et al. 2013. Elemental analyses of soil and sediment fused with lithium borate using isotope dilution laser ablation-inductively coupled plasma-mass spectrometry. Anal Chim Acta, 793: 72-78
[5]  Mathez E A, Waight T E. 2003. Lead isotopic disequilibrium between sulfide and plagioclase in the Bushveld Complex and the chemical evolution of large layered intrusions. Geochim Cosmochim Acta, 67: 1875-1888
[6]  Mil-Homens M, Blum J, Canário J, et al. 2013. Tracing anthropogenic Hg and Pb input using stable Hg and Pb isotope ratios in sediments of the central Portuguese Margin. Chem Geol, 336: 62-71
[7]  Novak M, Pacherova P, Erbanova L, et al. 2012. Using S and Pb isotope ratios to trace leaching of toxic substances from an acid-impacted industrial-waste landfill (Pozdatky, Czech Republic). J Hazard Mater, 235-236: 54-61
[8]  Paul A, Jung S, Romer R L, et al. 2014. Petrogenesis of synorogenic high-temperature leucogranites (Damara orogen, Namibia): Constraints from U-Pb monazite ages and Nd, Sr and Pb isotopes. Gondwana Res, 25: 1614-1626
[9]  Pettke T, Oberli F, Audétat A, et al. 2012. Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS. Ore Geol Rev, 44: 10-38
[10]  Rehk?mper M, Mezger K. 2000. Investigation of matrix effects for Pb isotope ratio measurements by multiple collector ICPMS: Verification and application of optimised analytical protocols. J Anal Atom Spectrom, 15: 1451-1460
[11]  Sj?stad K E, Andersen T, Simonsen S L. 2013. Application of laser ablation inductively coupled plasma multicollector mass spectometry in determination of lead isotope ratios in common glass for forensic purposes. Spectrochim Acta B, 89: 84-92
[12]  Souders A K, Sylvester P J. 2010. Accuracy and precision of non-matrix-matched calibration for lead isotope ratio measurements of lead-poor minerals by LA-MC-ICPMS. J Anal Atom Spectrom, 25: 975-988
[13]  T Townsend A, Yu Z, McGoldrick P, et al. 1998. Precise lead isotope ratios in Australian galena samples by high resolution inductively coupled plasma mass spectrometry. J Anal Atom Spectrom, 13: 809-813
[14]  Walraven N, van Gaans P F M, van der Veer G, et al. 2013a. Lithologically inherited variation in Pb isotope ratios in sedimentary soils in The Netherlands. Appl Geochem, 37: 228-241
[15]  Walraven N, van Gaans P F M, van der Veer G, et al. 2013b. Tracing diffuse anthropogenic Pb sources in rural soils by means of Pb isotope analysis. Appl Geochem, 37: 242-257
[16]  Walraven N, van Os B J H, Klaver G T, et al. 2014a. The lead (Pb) isotope signature, behaviour and fate of traffic-related lead pollution in roadside soils in The Netherlands. Sci Total Environ, 472: 888-900
[17]  Walraven N, van Os B J H, Klaver G T, et al. 2014b. Reconstruction of historical atmospheric Pb using Dutch urban lake sediments: A Pb isotope study. Sci Total Environ, 484: 185-195
[18]  Wang C, Wang J, Yang Z, et al. 2013. Characteristics of lead geochemistry and the mobility of Pb isotopes in the system of pedogenic rock-pedosphere-irrigated riverwater-cereal-atmosphere from the Yangtze River delta region, China. Chemosphere, 93: 1927-1935
[19]  Westgate J A, Pearce N J G, Perkins W T, et al. 2011. Lead isotope ratios of volcanic glass by laser ablation inductively-coupled plasma mass spectrometry: Application to Miocene tephra beds in Montana, USA and adjacent areas. Quatern Int, 246: 82-96
[20]  Woodhead J, Hergt J, Meffre S, et al. 2009. In situ Pb-isotope analysis of pyrite by laser ablation (multi-collector and quadrupole) ICPMS. Chem Geol, 262: 344-354
[21]  Zhao K D, Jiang S Y, Ni P, et al. 2007. Sulfur, lead and helium isotopic compositions of sulfide minerals from the Dachang Sn-polymetallic ore district in South China: Implication for ore genesis. Miner Petrol, 89: 251-273
[22]  Zhu L, Guo L, Gao Z, et al. 2010. Source and distribution of lead in the surface sediments from the South China Sea as derived from Pb isotopes. Mar Pollut Bull, 60: 2144-2153
[23]  蒋少涌, 杨涛, 李亮, 等. 2006. 大西洋洋中脊TAG热液区硫化物铅和硫同位素研究. 岩石学报, 22: 2597-2602
[24]  刘玉平. 1998. 一个受后期改造和热液叠加的块状硫化物矿床—都龙超大型锡锌多金属矿床. 矿物岩石地球化学通报, 17: 22-24
[25]  袁洪林, 陈开运, 包志安, 等. 2013. 飞秒激光剥蚀多接收等离子体质谱准确分析地质样品中的铅同位素组成.科学通报, 58: 3440-3449
[26]  张锦让, 温汉捷. 2012. 云南兰坪盆地西缘脉状铜多金属矿床硫、铅同位素组成及成矿示踪. 地球化学, 41: 166-180
[27]  朱炳泉. 1993. 矿石Pb同位素三维空间拓补图解用于地球化学省与矿种区划. 地球化学, 22: 209-216
[28]  朱炳泉. 1998. 地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化. 北京: 科学出版社. 330
[29]  Baker J, Peate D, Waight T, et al. 2004. Pb isotopic analysis of standards and samples using a 207Pb-204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chem Geol, 211: 275-303
[30]  Belshaw N S, Freedman P A, O''Nions R K, et al. 1998. A new variable dispersion double-focusing plasma mass spectrometer with performance illustrated for Pb isotopes. Int J Mass Spectrom, 181: 51-58
[31]  Chang X Y, Zhu B Q. 2002. Isotope Geochemistry of the Dongchuan copper deposit, Yuannan, SW China: Stratigraphic chronology and application of lead isotopes in geochemical exploration. Chin J Geochem, 21: 65-72
[32]  Chang X Y, Zhu B Q, Yu S J, et al. 2003. Application of lead isotopes to geochemical exploration of gold deposits in Baoban, Hainan Province, China. Chin J Geochem, 22: 244-252
[33]  Chen K Y, Yuan H L, Bao Z A, et al. 2014. Precise and accurate in situ determination of lead isotope ratios in NIST, USGS, MPI-DING and CGSG glass reference materials using Femtosecond Laser Ablation MC-ICP-MS. Geostand Geoanal Res, 38: 5-21
[34]  Darling J R, Storey C D, Hawkesworth C J, et al. 2012. In-situ Pb isotope analysis of Fe-Ni-Cu sulphides by laser ablation multi-collector ICPMS: New insights into ore formation in the Sudbury impact melt sheet. Geochim Cosmochim Acta, 99: 1-17
[35]  Ding Q F, Jiang S Y, Sun F Y, et al. 2013. Origin of the Dachang gold deposit, NW China: Constraints from H, O, S, and Pb isotope data. Int Geol Rev, 55: 1885-1901
[36]  Hoskin P W O, Wysoczanski R J. 1998. In situ accurate and precise lead isotopic analysis of ultra-small analyte volumes (10-16 m3) of solid inorganic samples by high mass resolution secondary ion mass spectrometry. J Anal Atom Spectrom, 13: 597-601
[37]  侯明兰, 蒋少涌, 姜耀辉,等. 2006. 胶东蓬莱金成矿区的S-Pb同位素地球化学和Rb-Sr同位素年代学研究. 岩石学报, 20: 2525-2533

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133