全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

纳米离子探针分析技术及其在地球科学中的应用

DOI: 10.1007/s11430-015-5106-6, PP. 1335-1346

Keywords: 纳米离子探针,微束分析,元素分布图像,Pb-Pb和U-Pb定年,稳定同位素

Full-Text   Cite this paper   Add to My Lib

Abstract:

?纳米离子探针在显著提高空间分辨能力的同时,仍然保留了较高的质量分辨、灵敏度和分析精度.它已经成为物质成分分析的重要新平台,广泛应用于空间科学、地球科学、生命科学和材料科学等领域.通过小至50nm的Cs+离子束扫描样品表面,它可以同时获得多达7个元素或同位素的高空间分布图像.利用法拉梯杯接收信号时,C,O和S等稳定同位素的分析精度可以达到0.3‰~0.5‰(1SD).尽管这一精度与传统离子探针0.1‰的精度水平仍有差距,但是可以满足大部分的地球科学需求.中国科学院地质与地球物理研究所于2011年安装了中国第一台纳米离子探针(CamecaNanoSIMS50L),本文在其工作原理和分析功能的基础上,介绍基于这台仪器研发的分析方法,以及它们在地球科学中的潜在应用,包括矿物环带中微量元素分布、超高空间分辨(2~5μm)的Pb-Pb和U-Pb定年、磷灰石和硅酸盐玻璃的水含量和H同位素分析、金刚石和石墨的C同位素分析、碳酸盐的O同位素分析、硫化物的S同位素分析等.此外,为了方便国内地球科学研究者使用纳米离子探针,本文还介绍了样品制备的具体要求.

References

[1]  Li X, Tang G, Gong B, et al. 2013. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chin Sci Bull, 58: 4647-4654
[2]  Li X, Liu Y, Li Q L, et al. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem Geophys Geosyst, 10: Q04010, doi: 10.1029/2009GC002400
[3]  Lin Y, Feng L, Hao J, et al. 2014. Sintering nano-crystalline calcite: A new method of synthesizing homogeneous reference materials for SIMS analysis. J Anal At Spectrom, 29:1686-1691
[4]  McCubbin F M, Steele A, Hauri E H, et al. 2010. Nominally hydrous magmatism on the Moon. Proc Natl Acad Sci USA, 107: 11223-11228
[5]  McPhail D. 2006. Applications of Secondary Ion Mass Spectrometry (SIMS) in materials science. J Mater Sci, 41: 873-903
[6]  Meibom A, Cuif J P, Houlbreque F, et al. 2008. Compositional variations at ultra-structure length scales in coral skeleton. Geochim Cosmochim Acta, 72: 1555-1569
[7]  Messenger S, Keller L P, Stadermann F J, et al. 2003. Samples of stars beyond the solar system: Silicate grains in interplanetary dust. Science, 300: 105-108
[8]  Mojzsis SJ, Coath C D, Greenwood J P, et al. 2003. Mass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulfides determined by ion microprobe analysis. Geochim Cosmochim Acta, 67: 1635-1658
[9]  Musat N, Halm H, Winterholler B, et al. 2008. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci USA, 105: 17861-17866
[10]  Nadeau S L, Epstein S, Stolper E. 1999. Hydrogen and carbon abundances and isotopic ratios in apatite from alkaline intrusive complexes, with a focus on carbonatites. Geochim Cosmochim Acta, 63: 1837-1851
[11]  Nichols A, Wysoczanski R. 2007. Using micro-FTIR spectroscopy to measure volatile contents in small and unexposed inclusions hosted in olivine crystals. Chem Geol, 242: 371-384
[12]  Nishizawa M, Maruyama S, Urabe T, et al. 2010. Micro-scale (1.5 μm) sulphur isotope analysis of contemporary and early archean pyrite. Rapid Commun Mass Sp, 24: 1397-1404
[13]  李秋立, 杨蔚, 刘宇, 等. 2013. 离子探针微区分析技术及其在地球科学中的应用进展. 矿物岩石地球化学通报, 32: 310-327
[14]  徐伟彪, 2005. 离子探针测试方法及其在矿物微区微量元素和同位素分析中的应用. 高校地质学报, 11: 239-252
[15]  Affek H P, Bar-Matthews M, Ayalon A, et al. 2008. Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by “clumped isotope” thermometry. Geochim Cosmochim Acta, 72: 5351-5360
[16]  Anders E, Ebihara M. 1982. Solar-system abundances of the elements. Geochim Cosmochim Acta, 46: 2363-2380
[17]  Aubaud C, Withers A C, Hirschmann M M, et al. 2007. Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals. Am Mineral, 92: 811-828
[18]  Badro J, Ryerson F J, Weber P K, et al. 2007. Chemical imaging with NanoSIMS: A window into deep-Earth geochemistry. Earth Planet Sci Lett, 262: 543-551
[19]  Barker S L L, Hickey K A, Cline J S, et al. 2009. Uncloaking invisible gold: use of NanoSIMS to evaluate gold, trace elements, and sulfur isotopes in pyrite from Carlin-type gold deposites. Econ Geol, 104: 897-904
[20]  Bontognali T R R, Sessions A L, Allwood A C, et al. 2012. Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism. Proc Natl Acad Sci USA, 109: 15146-15151
[21]  Boyd S R, Mattey D P, Pillinger C T, et al. 1987. Multiple growth events during diamond genesis: An integrated study of carbon and nitrogen isotopes and nitrogen aggregation state in coated stones. Earth Planet Sci Lett, 86: 341-353
[22]  Bradley J P, Ishii H A, Gillis-Davis J J, et al. 2014. Detection of solar wind-produced water in irradiated rims on silicate minerals. Proc Natl Acad Sci USA, 111: 1732-1735
[23]  Carley T, Miller C, Wooden J, et al. 2011. Zircon from historic eruptions in Iceland: Reconstructing storage and evolution of silicic magmas. Mineral Petrol, 102: 135-161
[24]  Coltice N, Simon L, Lecuyer C. 2004. Carbon isotope cycle and mantle structure. Geophys Res Lett, 31: L05603
[25]  Craddock P R, Rouxel O J, Ball L A, et al. 2008. Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS. Chem Geol, 253: 102-113
[26]  Craig H. 1965. The measurement of oxygen isotope paleotemperatures. In: Tongiorgi E, ed. Stable Isotopes in Oceanographic Studies and Paleotemperatures. Spoleto: Lab Geol Nucl Pisa. 161-182
[27]  Dark C, Kilburn M R, Hammerl G, et al. 2006. NanoSIMS analysis of Ca doping at a grain boundary in a superconducting YBCO Ca-123/123 bicrystal. J Phys-Conf Ser, 43: 272-276
[28]  Deloule E, Paillat O, Pichavant M, et al. 1995. Ion microprobe determination of water in Silicate-Glasses: Methods and applications. Chem Geol, 125: 19-28
[29]  Dobrzhinetskaya L F, Wirth R, Green H W. 2007. A look inside of diamond-forming media in deep subduction zones. Proc Natl Acad Sci USA, 104: 9128-9132
[30]  Eldridge C S, Compston W, Williams I S, et al. 1991. Isotope evidence for the involvement of recycled sediments in diamond formation. Nature, 353: 649-653
[31]  Farquhar J, Hauri E, Wang J. 1999. New insights into carbon fluid chemistry and graphite precipitation: SIMS analysis of granulite facies graphite from Ponmudi, South India. Earth Planet Sci Lett, 171: 607-621
[32]  Fitzsimons I, Harte B, Chinn I, et al. 1999. Extreme chemical variation in complex diamonds from George Creek, Colorado: A SIMS study of carbon isotope composition and nitrogen abundance. Mineral Mag, 63: 857-857
[33]  Gao S, Rudnick R L, Yuan H L, et al. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892-897
[34]  Gardner J, Carey S, Rutherford M, et al. 1995. Petrologic diversity in Mount St. Helens dacites during the last 4000 years: Implications for magma mixing. Contrib Mineral Petrol, 119: 224-238
[35]  Greenwood J, Itoh S, Sakamoto N, et al. 2014. Hydrogen isotopes of water in the moon: Evidence for the giant impact model from melt inclusions and apatite in apollo rock samples. Lunar and Planetary Institute Science Conference Abstracts. 2707
[36]  Greenwood J, Itoh S, Sakamoto N, et al. 2008. Hydrogen isotope evidence for loss of water from Mars through time. Geophys Res Lett, 35: L05203
[37]  Greenwood J, Itoh S, Sakamoto N. et al. 2011. Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nature, 4: 1-4
[38]  Hauri E, Wang J, Dixon J E, et al. 2002. SIMS analysis of volatiles in silicate glasses: 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol, 183: 99-114
[39]  Hauri E, Weinreich T, Saal A E, et al. 2011. High pre-eruptive water contents preserved in lunar melt inclusions. Science, 333: 213-215
[40]  Herrmann A M, Ritz K, Nunan N, et al. 2007. Nano-scale secondary ion mass spectrometry—A new analytical tool in biogeochemistry and soil ecology: A review article. Soil Biol Biochem, 39: 1835-1850
[41]  Hoppe P. 2006. NanoSIMS: A new tool in cosmochemistry. Appl Surf Sci, 252: 7102-7106
[42]  Hoskin P, Arslan M, Aslan Z, et al. 1998. Clinopyroxene phenocryst formation in an alkaline magma: Interpretations from oscillatory zoning. Mineral Mag, 62: 653-654
[43]  Hu S, Lin Y, Zhang J, et al. 2014. NanoSIMS analyses of apatite and melt inclusions in the GRV 020090 Martian meteorite: Hydrogen isotope evidence for recent past underground hydrothermal activity on Mars. Geochim Cosmochim Acta, 140: 321-333
[44]  Ireland T R, Williams I S. 2003. Considerations in Zircon Geochronology by SIMS. Rev Mineral Geochem, 53: 215-241
[45]  Kita N T, Ushikubo T, Fu B, et al. 2009. High precision SIMS oxygen isotope analysis and the effect of sample topography. Chem Geol, 264: 43-57
[46]  Klemetti E W, Deering C D, Cooper K M, et al. 2011. Magmatic perturbations in the Okataina Volcanic Complex, New Zealand at thousand-year timescales recorded in single zircon crystals. Earth Planet Sci Lett, 305: 185-194
[47]  Koga K, Hauri E, Hirschmann M, et al. 2003. Hydrogen concentration analyses using SIMS and FTIR: Comparison and calibration for nominally anhydrous minerals. Geochem Geophys Geosyst, 4: 1019, doi: 10.1029/2002GC000378
[48]  Kozdon R, Kita N T, Huberty J M, et al. 2010. In situ sulfur isotope analysis of sulfide minerals by SIMS: Precision and accuracy, with application to thermometry of 3.5Ga Pilbara cherts. Chem Geol, 275: 243-253
[49]  L''Heureux I, Fowler A D. 1996. Dynamical model of oscillatory zoning in plagioclase with nonlinear partition relation. Geophys Res Lett, 23: 17-20
[50]  Lechene C, Hillion F, McMahon G, et al. 2006. High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol, 5: 20
[51]  Lechene C P, Luyten Y, McMahon G, et al. 2007. Quantitative Imaging of Nitrogen Fixation by Individual Bacteria Within Animal Cells. Science, 317: 1563-1566
[52]  Liu Y, Li X H, Li Q L, et al. 2011. Precise U-Pb zircon dating at a scale of <5 micron by the CAMECA 1280 SIMS using a Gaussian illumination probe. J Anal At Spectrom, 26: 845-851
[53]  Loomis T. 1982. Numerical simulations of crystallization processes of plagioclase in complex melts: the origin of major and oscillatory zoning in plagioclase. Contrib Mineral Petrol, 81: 219-229
[54]  Orland I J, Bar-Matthews M, Ayalon A, et al. 2012. Seasonal resolution of Eastern Mediterranean climate change since 34 ka from a Soreq Cave speleothem. Geochim Cosmochim Acta, 89: 240-255
[55]  Page F Z, Ushikubo T, Kita N T, et al. 2007. High-precision oxygen isotope analysis of picogram samples reveals 2 μm gradients and slow diffusion in zircon. Am Mineral, 92: 1772-1775
[56]  Palot M, Pearson D, Stern R, et al. 2014. Isotopic constraints on the nature and circulation of deep mantle C-H-O-N fluids: Carbon and nitrogen systematics within ultra-deep diamonds from Kankan (Guinea). Geochim Cosmochim Acta, 139: 26-46
[57]  Papineau D, Mojzsis S J, Coath C D, et al. 2005. Multiple sulfur isotopes of sulfides from sediments in the aftermath of Paleoproterozoic glaciations. Geochim Cosmochim Acta, 69: 5033-5060
[58]  Pokhilenko N P, Sobolev N V, Reutsky V N, et al. 2004. Crystalline inclusions and C isotope ratios in diamonds from the Snap Lake/King Lake kimberlite dyke system: Evidence of ultradeep and enriched lithospheric mantle. Lithos, 77: 57-67
[59]  Prechtel F, Stalder R. 2010. FTIR spectroscopy with a focal plane array detector: A novel tool to monitor the spatial OH-defect distribution in single crystals applied to synthetic enstatite. Am Mineral, 95: 888-891
[60]  Riciputi L R, Paterson B A, Ripperdan R L. 1998. Measurement of light stable isotope ratios by SIMS: Matrix effects for oxygen, carbon, and sulfur isotopes in minerals 33 Dedicated to the memory of Al Nier. Int J Mass Spectrom, 178: 81-112
[61]  Russell S S, Arden J W, Pillinger C T. 1996. A carbon and nitrogen isotope study of diamond from primitive chondrites. Meteorit Planet Sci, 31: 343-355
[62]  Shore M, Fowler A D. 1996. Oscillatory zoning in minerals: a common phenomenon. Can Mineral, 34: 1111-1126
[63]  Singer B S, Dungan M A, Layne G D. 1995. Textures and Sr, Ba, Mg, Fe, K, and Ti compositional profiles in volcanic plagioclase: Clues to the dynamics of calc-alkaline magma chambers. Am Mineral, 80: 776-798
[64]  Smart K A, Chacko T, Stachel T, et al. 2011. Diamond growth from oxidized carbon sources beneath the Northern Slave Craton, Canada: A δ13C-N study of eclogite-hosted diamonds from the Jericho kimberlite. Geochim Cosmochim Acta, 75: 6027-6047
[65]  Stichler W. 1995. Interlaboratory comparison of new materials for carbon and oxygen isotope ratio measurements. Reference and Intercomparison Materials for Stable Isotopes of Light Elements, IAEA-TECDOC-825: 67-74
[66]  Sugiura N, Hoshino H. 2000. Hydrogen-isotopic compositions in Allan Hills 84001 and the evolution of the martian atmosphere. Meteorit Planet Sci, 35: 373-380
[67]  Wang W, Liu X, Hu J, et al. 2014. Late Paleoproterozoic medium-P high grade metamorphism of basement rocks beneath the northern margin of the Ordos Basin, NW China: Petrology, phase equilibrium modelling and U-Pb geochronology. Precambrian Res, 251: 181-196
[68]  Wang Y, Merino E. 1992. Dynamic model of oscillatory zoning of trace elements in calcite: Double layer, inhibition, and self-organization. Geochim Cosmochim Acta, 56: 587-596
[69]  Watson L L, Hutcheon I D, Epstein S, et al. 1994. Water on Mars: Clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites. Science, 265: 86-90
[70]  Whitehouse M J. 2013. Multiple sulfur isotope determination by SIMS: Evaluation of reference sulfides for Δ33S with observations and a case study on the determination of Δ36S. Geostand Geoanal Res, 37: 19-33
[71]  Winterholler B, Hoppe P, Andreae M O, et al. 2006. Measurement of sulfur isotope ratios in micrometer-sized samples by NanoSIMS. Appl Surf Sci, 252: 7128-7131
[72]  Yang W, Lin Y T, Zhang J C, et al. 2012. Precise micrometre-sized Pb-Pb and U-Pb dating with NanoSIMS. J Anal At Spectrom, 27: 479-487
[73]  Zhang H F. 2005. Transformation of lithospheric mantle through peridotite-melt reaction: A case of Sino-Korean craton. Earth Planet Sci Lett, 237: 768-780
[74]  Zhang J, Lin Y, Yang W, et al. 2014. Improved precision and spatial resolution of sulfur isotope analysis using NanoSIMS. J Anal At Spectrom, 29: 1934-1943
[75]  Zhang Y, Zindler A. 1993. Distribution and evolution of carbon and nitrogen in Earth. Earth Planet Sci Lett, 117: 331-345
[76]  Zinner E, McKeegan K D, Walker R M. 1983. Laboratory measurements of D/H ratios in interplanetary dust. Nature, 305: 119-121
[77]  Zinner E K, Moynier F, Stroud R M. 2011. Laboratory technology and cosmochemistry. Proc Natl Acad Sci USA, 108: 19135-19141

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133