全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

铀矿fs-LA-ICP-MS原位微区U-Pb定年

DOI: 10.1007/s11430-015-5154-y, PP. 1304-1315

Keywords: 铀矿,fs-LA-ICP-MSU-Pb定年,元素分馏,罗辛铀矿,GBW04420

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用飞秒激光剥蚀电感耦合等离子体质谱(fs-LA-ICP-MS)对锆石和铀矿之间的Pb/U分馏行为,以及纳米比亚白岗岩中晶质铀矿进行了详细的原位微区U-Pb年代学研究.结果表明,fs-LA-ICP-MS分析过程中铀矿和锆石之间表现出显著不同的Pb/U分馏行为,利用锆石标准物质M257校正铀矿U-Pb定年标准物质GBW04420得到的年龄偏大17%.因此,精确的铀矿LA-ICP-MS原位微区U-Pb定年需要基体匹配的标准物质进行校正.以GBW04420为外标,利用fs-LA-ICP-MS在10μm,1Hz激光条件,同时配备信号匀化装置(SSD)的前提下,对两个来自纳米比亚罗辛(Rossing)铀矿床东南侧欢乐谷(Gaudeanmus)地区的白岗岩岩石薄片中晶质铀矿进行了分析.其中一个样品给出的U-Pb谐和年龄为(507±1)Ma(2σ,n=21),两个样品206Pb/238U加权平均年龄分别为(504±3)Ma(2σ,n=21)和(503±3)Ma(2σ,n=22).分析结果与前人的热电离质谱为基础的同位素稀释法(ID-TIMS)结果一致((509±1)和(508±12)Ma).同时与铀矿共生锆石给出的U-Pb上交点年龄结果((506±33)Ma(2σ,n=29)和(501±51)Ma(2σ,n=29))在误差范围内相同.由于共生高U锆石严重的Pb丢失,所以铀矿定年相对于共生锆石定年结果更为精确可靠.GBW04420是一个可以用于铀矿原位微区U-Pb同位素准确定年的标准物质.

References

[1]  Jackson S E, Pearson N J, Griffin W L, Belousova E A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol, 211: 47-69
[2]  Janeczek J, Ewing R C. 1992. Structural formula of uraninite. J Nucl Mater, 190: 128-132
[3]  Kimura J J, Chang Q, Tani K. 2011. Optimization of ablation protocol for 200 nm UV femtosecond laser in precise U-Pb age dating coupled to multi-collector ICP mass spectrometry. Geochem J, 45: 283-296
[4]  Ko?ler J, Wiedenbeck M, Wirth R, Hovorka J, Sylvester P, Míková J. 2005. Chemical and phase composition of particles produced by laser ablation of silicate glass and zircon—Implications for elemental fractionation during ICP-MS analysis. J Anal Atom Spectrom, 20: 402-409
[5]  Kuhn B K, Birbaum K, Luo Y, Günther D. 2010. Fundamental studies on the ablation behaviour of Pb/U in NIST 610 and zircon 91500 using laser ablation inductively coupled plasma mass spectrometry with respect to geochronology. J Anal Atom Spectrom, 25: 21-27
[6]  Kuhn H R, Guillong M, Günther D. 2004. Size-related vaporisation and ionisation of laser-induced glass particles in the inductively coupled plasma. Anal Bioanal Chem, 378: 1069-1074
[7]  Kuhn H R, Günther D. 2004. Laser ablation-ICP-MS: Particle size dependent elemental composition studies on filter-collected and online measured aerosols from glass. J Anal Atom Spectrom, 19: 1158-1164
[8]  Lach P, Mercadier J, Dubessy J, Boiron M-C, Cuney M. 2013. In situ quantitative measurement of rare earth elements in uranium oxides by laser ablation-inductively coupled plasma-mass spectrometry. Geostand Geoanal Res, 37: 277-296
[9]  Li X H, Liu Y, Li Q L, Hua G C, Chamberlain K R. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem Geophy Geosy, 10: Q04010, doi: 10.1029/2009GC002400
[10]  Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J Petrol, 51: 537-571
[11]  Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol, 257: 34-43
[12]  Longerich H P, Günther D, Jackson S E. 1996. Elemental fractionation in laser ablation inductively coupled plasma mass spectrometry. Fresenius. J Anal Chem, 355: 538-542
[13]  Ludwig K R, Grauch R I, Nutt C J, Nash J T, Frishman D, Simmons K R. 1987. Age of uranium mineralization at the Jabiluka and Ranger deposits, Northern Territory, Australia: New U-Pb isotope evidence. Econ Geol, 82: 857-874
[14]  Míková J, Ko?ler J, Longerich H P, Wiedenbeck M, Hanchar J M. 2009. Fractionation of alkali elements during laser ablation ICP-MS analysis of silicate geological samples. J Anal Atom Spectrom, 24: 1244-1252
[15]  Müller W. 2003. Strengthening the link between geochronology, textures and petrology. Earth Planet Sci Lett, 206: 237-251
[16]  McDonough W F, Sun S S. 1995. The composition of the Earth. Chem Geol, 120: 223-253
[17]  Nasdala L, Hofmeister W, Norberg N, Mattinson J M, Corfu F, D?rr W, Kamo S L, Kennedy A K, Kronz A, Reiners P W, Frei D, Kosler J, Wan Y S, G?tze J, H?ger T, Kr?ner A, Valley J W. 2008. Zircon M257—A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostand Geoanal Res, 32: 247-265
[18]  Pearson N J, O''Reilly S Y, Griffin W L, Alard O, Belousova E, Anonymous. 2006. Linking crustal and mantle events using in situ trace-element and isotope analysis. Geochim Cosmochim Acta, 70: A479
[19]  Poitrasson F, Mao X, Mao S S, Freydier R, Russo R E. 2003. Comparison of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry analysis in glass, monazite, and zircon. Anal Chem, 75: 6184-6190
[20]  Reed S J B. 1990. Recent developments in geochemical microanalysis. Chem Geol, 83: 1-9
[21]  Rubatto D. 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol, 184: 123-138
[22]  Shaheen M E, Gagnon J E, Fryer B J. 2012. Femtosecond (fs) lasers coupled with modern ICP-MS instruments provide new and improved potential for in situ elemental and isotopic analyses in the geosciences. Chem Geol, 330-331: 260-273
[23]  Sun J F, Yang J H, Wu F Y, Xie L W, Yang Y H, Liu Z C, Li X H. 2012. In situ U-Pb dating of titanite by LA-ICPMS. Chin Sci Bull, 57: 2506-2516
[24]  Sylvester P J. 2008. Martix effects in laser ablation ICP-MS. In: Sylvester P J, ed. Ablation-ICP-MS in the Earth Sciences. Vancouver: Mineralogical Association of Canada Press. 67-78
[25]  陈金勇. 2014. 纳米比亚欢乐谷地区白岗岩型铀矿成矿机理研究. 博士学位论文. 北京: 核工业北京地质研究院. 1-179
[26]  葛祥坤, 秦明宽, 范光. 2011. 电子探针化学测年法在晶质铀矿/沥青铀矿定年研究中的应用现状. 世界核地质科学, 28: 55-62
[27]  刘勇胜, 胡兆初, 李明, 高山. 2013. LA-ICP-MS在地质样品元素分析中的应用. 科学通报, 58: 3753-3769
[28]  赵溥云, 李喜斌, 营俊龙, 李杰元, 徐梓阳, 侯艳先. 1995. 沥青铀矿铀铅同位素年龄标准物质. 北京: 核工业北京地质研究所
[29]  邹东风, 李方林, 张爽, 黄彬, 宗克清. 2011. 粤北下庄335矿床成矿时代的厘定—来自LA-ICP-MS沥青铀矿U-Pb年龄的制约. 矿床地质, 30: 912-922
[30]  Basson I J, Greenway G. 2004. The R?ssing uranium deposit: A product of late-kinematic localization of uraniferous granites in the central zone of the Damara Orogen, Namibia. J Afr Earth Sci, 38: 413-435
[31]  Boltwood B B. 1907. The ultimate disintegration products of radioactive elements, Part II. The disintegration products of uranium. Am J Sci, 23: 77-88
[32]  Bowles J F W. 1990. Age dating of individual grains of uraninite in rocks from electron-microprobe analyses. Chem Geol, 83: 47-53
[33]  Briqueu L, Lancelot J R, Valois J P, Walgenwitz F. 1980. Géochronologie U-Pb et genèse d''un type de minéralisation uranifère: Les alaskites de Goanikontès (Namibie) et leur encaissant. Bulletin des Centre de Recherches Exploration-Production Elf-Aquitanie, 4: 759-811
[34]  Carl C, Vonpechmann E, Hohndorf A, Ruhrmann G. 1992. Mineralogy and U/Pb, Pb/Pb, and Sm/Nd geochronology of the Key Lake uranium deposit, Athabasca Basin, Saskatchewan, Canada. Can J Earth Sci, 29: 879-895
[35]  Chipley D, Polito P A, Kyser T K. 2007. Measurement of U-Pb ages of uraninite and davidite by laser ablation-HR-ICP-MS. Am Mineral, 92: 1925-1935
[36]  Corfu F, Hanchar J M, Hoskin P W O, Kinny P. 2003. Atlas of zircon textures. Rev Mineral Geochem, 53: 469-500
[37]  Cross A, Jaireth S, Rapp R, Armstrong R. 2011. Reconnaissance-style EPMA chemical U-Th-Pb dating of uraninite. Aust J Earth Sci, 58: 675-683
[38]  D''Abzac F X, Seydoux-Guillaume A M, Chmeleff J, Datas L, Poitrasson F. 2012. In situ characterization of infra red femtosecond laser ablation in geological samples. Part B: The laser induced particles. J Anal Atom Spectrom, 27: 108-119
[39]  Decree S, Deloule E, De Putter T, Dewaele S, Mees F, Yans J, Marignac C. 2011. SIMS U-Pb dating of uranium mineralization in the Katanga Copperbelt: Constraints for the geodynamic context. Ore Geol Rev, 40: 81-89
[40]  Eggins S M, Kinsley L P J, Shelley J M G. 1998. Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Appl Surf Sci, 127-129: 278-286
[41]  Ewing R C, Meldrum A, Wang L, Weber W J, Corrales L R. 2003. Radiation effects in zircon. Rev Mineral Geochem, 53: 387-425
[42]  Fayek M, Harrison T M, Ewing R C, Grove M, Coath C D. 2002a. O and Pb isotopic analyses of uranium minerals by ion microprobe and U-Pb ages from the Cigar Lake deposit. Chem Geol, 185: 205-225
[43]  Fayek M, Harrison T M, Grove M, Coath C D. 2000. A rapid in situ method for determining the ages of uranium oxide minerals: Evolution of the Cigar Lake deposit, Athabasca Basin. Int Geol Rev, 42: 163-171
[44]  Fayek M, Kyser T K, Riciputi L R. 2002b. U and Pb isotope analysis of uranium minerals by ion microprobe and the geochronology of the McArthur River and Sue Zone uranium deposits, Saskatchewan, Canada. Can Mineral, 40: 1553-1569
[45]  Günther D, Hattendorf B. 2005. Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry. Trac-Trend Anal Chem, 24: 255-265
[46]  Günther D, Heinrich C A. 1999. Comparison of the ablation behaviour of 266 nm Nd: YAG and 193 nm ArF excimer lasers for LA-ICP-MS analysis. J Anal Atom Spectrom, 14: 1369-1374
[47]  Geisler T, Schaltegger U, Tomaschek F. 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements, 3: 43-50
[48]  Golubev V, Makar''ev L, Bylinskaya L. 2008. Deposition and remobilization of uranium in the North Baikal region: Evidence from the U-Pb isotopic systems of uranium ores. Geol Ore Deposit, 50: 482-490
[49]  Gray A L. 1985. Solid sample introduction by laser ablation for inductively coupled plasma source-mass spectrometry. Analyst, 110: 551-556
[50]  Hidaka H, Janeczek J, Skomurski F N, Ewing R C, Gauthier-Lafaye F. 2005. Geochemical fixation of rare earth elements into secondary minerals in sandstones beneath a natural fission reactor at Bangombé, Gabon. Geochim Cosmochim Acta, 69: 685-694
[51]  Hidaka H, Kikuchi M. 2010. SHRIMP in situ isotopic analyses of REE, Pb and U in micro-minerals bearing fission products in the Oklo and Bangombe natural reactors: A review of a natural analogue study for the migration of fission products. Precambrian Res, 183: 158-165
[52]  Hills J H, Richards J R. 1976. Pitchblende and galena ages in the Alligator Rivers region, northern territory, Australia. Miner Deposita, 11: 133-154
[53]  Hirata T, Kon Y. 2008. Evaluation of the analytical capability of NIR femtosecond laser ablation-inductively coupled plasma mass spectrometry. Anal Sci, 24: 345-353
[54]  Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem, 53: 27-62
[55]  Hu Z C, Gao S, Liu Y S, Hu S H, Chen H H, Yuan H L. 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J Anal Atom Spectrom, 23: 1093-1101
[56]  Hu Z C, Liu Y S, Chen L, Zhou L, Li M, Zong K Q, Zhu L Y, Gao S. 2011a. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution. J Anal Atom Spectrom, 26: 425-430
[57]  Hu Z C, Liu Y S, Chen L, Zhou L A, Li M, Zong K Q, Zhu L Y, Gao S. 2011b. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution. J Anal Atom Spectrom, 26: 425-430
[58]  Hu Z C, Liu Y S, Gao S, Xiao S Q, Zhao L S, Günther D, Li M, Zhang W, Zong K Q. 2012. A “wire” signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis. Spectrochim Acta B, 78: 50-57
[59]  Wiedenbeck M, Hanchar J M, Peck W H, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, Franchi I, Girard J P, Greenwood R C, Hinton R, Kita N, Mason P R D, Norman M, Ogasawara M, Piccoli P M, Rhede D, Satoh H, Schulz-Dobrick B, Skar O, Spicuzza M J, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q, Zheng Y F. 2004. Further characterisation of the 91500 zircon crystal. Geostand Geoanal Res, 28: 9-39
[60]  Zong K Q, Liu Y S, Gao C G, Hu Z H, Gao S, Gong H J. 2010. In situ U-Pb dating and trace element analysis of zircons in thin sections of eclogite: Refining constraints on the UHP metamorphism of the Sulu terrane, China. Chem Geol, 269: 237-251

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133