全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

二次离子质谱技术在季节分辨石笋δ18O分析中的应用

DOI: 10.1007/s11430-015-5114-6, PP. 1316-1323

Keywords: SIMS,石笋,δ18O,季节分辨率

Full-Text   Cite this paper   Add to My Lib

Abstract:

?尝试利用二次离子质谱(SIMS)技术,采用国家一级标样(GBW04481)Oka方解石和美国威斯康星大学标样UWC-3方解石,对长江中游清江和尚洞洞穴碳酸盐沉积物HS4石笋的8.3kaBP时段(236.3~235.6cm)进行了季节分辨率的δ18O原位分析,探讨了利用季节分辨SIMSδ18O所呈现出的年际旋回对石笋进行相对定年的可能性;并通过SIMS法与常规法δ18O值的比较,分析了两者间偏差产生的可能原因.以Oka作外标,利用CamecaIMS1280离子探针在3个工作日内对UWC-3进行了氧同位素分析,获得的测量结果(δ18OVPDB=-17.85‰±0.22‰,1SD)与其推荐值(δ18OVPDB=-17.83‰±0.08‰)在误差范围内一致,说明仪器稳定性良好、测试方法可靠.用SIMS法获得的HS4石笋δ18O季节分辨率记录,则呈现出较为显著的年际旋回特征,其旋回总数与同段石笋Mg/Ca比及石笋反光微层图像中所呈现出的年层总数一致,有望为不具备清晰年纹层石笋的相对定年提供一个新的方法.与常规法δ18O分析结果相比,HS4石笋SIMS法δ18O值系统偏负0.90‰,且季节性差异增大,其主要原因可能是缘于样品中细微裂隙、孔洞和包裹体的存在,同时亦不排除石笋中有机质的存在对SIMSδ18O值可能造成的影响,说明要获得与常规法δ18O值相符的SIMSδ18O值记录,石笋样品的致密度和纯净度均至关重要.

References

[1]  Hu C Y, Henderson G M, Huang J H, et al. 2008a. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet Sci Lett, 266: 221-232
[2]  Hu C, Henderson G, Huang J, et al. 2008b. Report of a three-year monitoring programme at Heshang Cave, Central China. Int J Speleol, 37: 143-151
[3]  Johnson K R, Hu C, Belshaw N S, et al. 2006. Seasonal trace-element and stable isotope variations in a Chinese speleothem: The potential for high resolution paleomonsoon reconstruction. Earth Planet Sci Lett, 244: 394-407
[4]  Kolodny Y, Bar-Matthews M, Ayalon A, et al. 2003. A high spatial resolution δ18O profile of a speleothem using an ion-microprobe. Chem Geol, 197: 21-28
[5]  Lachniet M S. 2009. Climatic and environmental controls on speleothem oxygen-isotope values. Quat Sci Rev, 28: 412-432
[6]  Li X H, Liu Y, Li Q L, et al. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem Geophys Geosyst, 10: Q04010
[7]  Li X H, L W X, Wang X C, et al. 2010a. SIMS U-Pb zircon geochronology of porphyry Cu-Au-(Mo) deposits in the Yangtze River Metallogenic Belt, eastern China: Magmatic response to early Cretaceous lithospheric extension. Lithos, 119: 427-438
[8]  Li X H, Long W G, Li Q L, et al. 2010b. Penglai zircon megacryst: A potential new working reference for microbeam analysis of Hf-O isotopes and U-Pb age. Geostand Geoanal Res, 34: 117-134
[9]  Li X H, Li Z X, He B, et al. 2012. The Early Permian active continental margin and crustal growth of the Cathaysia Block: In situ U-Pb, Lu-Hf and O isotope analyses of detrital zircons. Chem Geol, 328: 195-207
[10]  Liu Y H, Henderson G M, Hu C Y, et al. 2013. Links between the East Asian monsoon and North Atlantic climate during the 8200 year event. Nat Geosci, 6: 117-120
[11]  Orland I J, Bar-Matthews M, Kita N T, et al. 2009. Climate deterioration in the Eastern Mediterranean as revealed by ion microprobe analysis of a speleothem that grew from 2.2 to 0.9 ka in Soreq Cave, Israel. Quat Res, 71: 27-35
[12]  Orland I J. 2012. Seasonality from speleothems: High-resolution ion microprobe studies at Soreq Cave, Israel. Doctoral Dissertation. Madison: University of Wisconsin-Madison
[13]  Orland I J, Burstyn Y, Bar-Matthews M, et al. 2014. Seasonal climate signals (1990-2008) in amodern Soreq Cave stalagmite as revealed by high-resolution geochemical analysis. Chem Geol, 363: 322-333
[14]  李献华, 李武显, 王选策, 等. 2009. 幔源岩浆在南岭燕山早期花岗岩形成中的作用: 锆石原位Hf-O同位素制约. 中国科学: 地球科学, 39: 872-887
[15]  阮骄杨, 胡超涌. 2010. 湖北清江和尚洞石笋方解石晶体的季节性生长及其环境控制. 科学通报, 55: 2986
[16]  谢树成, 黄俊华, 王红梅, 等. 2005. 湖北清江和尚洞石笋脂肪酸的古气候意义. 中国科学: 地球科学. 35: 246-251
[17]  Alley R B, ágústsdóttir A M. 2005. The 8 k event: Cause and consequences of a major Holocene abrupt climate change. Quat Sci Rev, 24: 1123-1149
[18]  Baker A, Smith C L, Jex C, et al. 2008. Annually laminated speleothems: A review. Int J Speleol, 37: 193-206
[19]  Fairchild I J, Treble P C. 2009. Trace elements in speleothems as recorders of environmental change. Quat Sci Rev, 28: 449-468
[20]  Fairchild I J, Smith C L, Baker A, et al. 2006. Modification and preservation of environmental signals in speleothems. Earth-Sci Rev, 75: 105-153
[21]  Henderson G M. 2006. Caving in to new chronologies. Science, 313: 620-622
[22]  Smith C L, Fairchild I J, Sp?tl C, et al. 2009. Chronology building using objective identification of annual signals in trace element profiles of stalagmites. Quat Geochronol, 4: 11-21
[23]  Tan M, Baker A, Genty D, et al. 2006. Applications of stalagmite laminae to paleoclimate reconstructions: Comparison with dendrochronology/ climatology. Quat Sci Rev, 25: 2103-2117
[24]  Treble P C, Chappell J, Gagan M K, et al. 2005. In situ measurement of seasonal δ18O variations and analysis of isotopic trends in a modern speleothem from southwest Australia. Earth Planet Sci Lett, 233: 17-32
[25]  Treble P C, Schmitt A K, Edwards R L, et al. 2007. High resolution Secondary Ionisation Mass Spectrometry (SIMS) δ18O analyses of Hulu Cave speleothem at the time of Heinrich Event 1. Chem Geol, 238: 197-212
[26]  Verheyden S, Genty D, Cattani O, et al. 2008. Water release patterns of heated speleothem calcite and hydrogen isotope composition of fluid inclusions. Chem Geol, 247: 226-281
[27]  Wang Y J, Cheng H, Edwards R L, et al. 2005. The Holocene Asian Monsoon: Links to solar changes and North Atlantic climate. Science, 308: 854-857
[28]  Wang Y, Cheng H, Edwards R L, et al. 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451: 1090-1093
[29]  Zhang P Z, Cheng H, Edwards R L, et al. 2008. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science, 322: 940-942

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133