全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

闪电VHF辐射源三维定位网络测量精度的实验研究

DOI: 10.1007/s11430-015-5119-1, PP. 1537-1552

Keywords: 闪电三维定位网络,测量精度,标准偏差,几何模型,理论误差

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用自制的探空球载闪电模拟源对青海大通地区建立的闪电VHF辐射源三维定位网络的精确度进行了实验研究,通过探空闪电模拟源携带的GPS飞行轨迹,对观测网络中心上空附近和网络外辐射源定位的误差进行了估算,并与模型理论计算作比较.对最小二乘拟合优度卡方值作计算检验,估算了拟合公式中的测时误差.结果表明,三维定位网络的几何设置,测量设置和计算方法合理,得到的定位数据和标定结果一致,在一定的误差范围内.定位误差随高度增加,网内辐射源在网络中心上空的水平定位误差范围为10~48m(rms),整层平均误差21m(rms).垂直定位误差范围为20~78m(rms),整层平均误差49m(rms),对于网络内外辐射源的定位误差分别采用不同的模型计算,其结果和误差标定结果一致.对于网内采用标准差合适,网外采用协方差,且定位误差是径向距离的函数,定位误差随距离增加.模型预测径向距离和高度误差随r2增加,径向距离误差随距离呈抛物线形状,通过协方差计算结果也证实了这一点.分析又指出,对于闪电辐射源,其拟合卡方值χ2应该小于5,拟合公式中的测时误差Δtrms在50~66ns范围内.

References

[1]  李亚珺, 张广庶, 文军, 等. 2012. 沿海地区一次多单体雷暴电荷结构时空演变. 地球物理学报, 55: 3203-3212
[2]  武斌, 张广庶, 王彦辉, 等. 2013. 青藏高原东北部闪电M变化多参量观测. 物理学报, 18: 531-545
[3]  张广庶, 赵玉祥, 郄秀书, 等. 2008. 利用无线电窄带干涉仪定位系统对地闪全过程的观测与研究. 中国科学D辑: 地球科学, 38: 1167-1180
[4]  张广庶, 王彦辉, 郄秀书, 等. 2010. 基于时差法三维定位系统对闪电放电过程的观测研究. 中国科学: 地球科学, 40: 523-534
[5]  张荣, 张广庶, 李亚珺, 等. 2014. 基于甚高频三维定位估算闪电通道产生的氮氧化物. 中国科学: 地球科学, 44: 2540-2553
[6]  Bevington P. 1969. Data Reduction and Error Analysis for the Physical Sciences. New York: McGraw-Hill. 65-214
[7]  Boccippio D, Heckman S, Goodman S. 2001. A diagnostic analysis of the Kennedy Space Center LDAR network: 1. Data characteristics. J Geophys Res, 106: 4769-4786
[8]  Fan X, Zhang G, Wang Y, et al. 2014. Analyzing the transmission structures of long continuing current processes from negative ground flashes on the Qinghai-Tibetan Plateau. J Geophys Res, 119: 2050-2063
[9]  Hamlin T D. 2004. The New Mexico Tech lightning mapping array. Doctoral Dissertation. Socorro: New Mexico Institute of Mining and Technology
[10]  Holmes T, Reedy P. 1951. Geometrical Dilution of Precision. Technical Report. Satellite Navigation and Geomatics Engineering. Air Force Missile Test Center, Patrick Air Force Base, Florida
[11]  Koshak W, Macgorman D, Bruning E, et al. 2004. North Alabama Lightning Mapping Array (LMA): VHF source retrieval algorithm and error analyses. J Atmos Oceanic Technol, 21: 543-558
[12]  Krehbiel P, Thomas R, Rison W, et al. 2000. Lightning mapping observations in central Oklahoma. Eos Trans AGU, 81: 21-25
[13]  Lang T, Miller L, Weisman M, et al. 2004. The severe thunderstorm electrification and precipitation study (steps). Bull Am Meteorol Soc, 85: 1107
[14]  Lennon C. 1975. LDAR: New lightning detection and ranging system. Eos Trans AGU, 56: 991
[15]  Li Y, Zhang G, Wen J, et al. 2013. Electrical structure of a Qinghai-Tibet Plateau thunderstorm based on three-dimensional lightning mapping. Atmos Res, 134: 137-149
[16]  Maier L, Lennon C, Britt T, et al. 1995. LDAR system performance and analysis. The 6th International Conference on Aviation Weather Systems. Am Meteorol Soc, Boston, Mass
[17]  Poehler H A. 1977. An Accuracy Analysis of the LDAR System. Technical Report. Earth Sciences. Kennedy Space Center
[18]  Proctor D. 1971. A hyperbolic system for obtaining VHF radio pictures of lightning. J Geophys Res, 76: 1478-1489
[19]  Proctor D. 1981. VHF radio pictures of cloud flashes. J Geophys Res, 86: 4041-4071
[20]  Proctor D, Uytenbogaardt R, Meredith B. 1988. VHF radio pictures of lightning flashes to ground. J Geophys Res, 93: 12683-12727
[21]  Rison W, Thomas R, Krehbiel P R, et al. 1999. A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys Res Lett, 26: 3573-3576
[22]  Thomas R, Krehbiel P, Rison W, et al. 2004. Accuracy of the lightning mapping array. J Geophys Res, 109: D14207, doi: 10.1029/2004JD004549
[23]  Twomey S. 1977. Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measuremens. New York: Elsevier

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133