全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
测绘学报  2015 

利用GOCE卫星轨道数据恢复地球重力场模型方法的分析

DOI: 10.11947/j.AGCS.2015.20130412, PP. 142-149

Keywords: GOCE卫星,地球重力场模型,能量守恒法,短弧长积分法,平均加速度法,正则化技术

Full-Text   Cite this paper   Add to My Lib

Abstract:

欧空局早期公布的时域法和空域法解算的GOCE模型均采用能量守恒法处理轨道数据,但恢复的长波重力场信号精度较低,而且GOCE卫星在两极存在数据空白,利用其观测数据恢复重力场模型是一个不适定问题,导致解算的模型带谐项精度较低,需进行正则化处理。本文分析了基于轨道数据恢复重力场模型的方法用于处理GOCE数据的精度,对最优正则化方法和参数的选择进行研究。利用GOCE卫星2009-11-01—2010-01-31共92d的精密轨道数据,采用不依赖先验信息的能量守恒法、短弧积分法和平均加速度法恢复GOCE重力场模型,利用Tikhonov正则化技术处理病态问题。结果表明,平均加速度法恢复模型的精度最高,能量守恒法的精度最低,短弧积分法的精度稍差于平均加速度法。未来联合处理轨道和梯度数据时,建议采用平均加速度法或短弧积分法处理轨道数据,并且轨道数据可有效恢复120阶次左右的模型。Kaula正则化和SOT处理GOCE病态问题的效果最好,并且两者对应的最优正则化参数基本一致,但利用正则化技术不能完全抑制极空白问题的影响,需要联合GRACE等其他数据才能获得理想的结果。

References

[1]  European Space Age. GOCE Mission Requirements Document[EB/OL].[2013-05-17].http://earth.esa.int/web/guest/documeut-library.
[2]  HWANG C. Gravity Recovery Using COSMIC GPS Data: Application of Orbital Perturbation Theory [J]. Journal of Geodesy, 2001, 75(3): 117-136.
[3]  ZHU S, REIGBER C, K?NIG R. Integrated Adjustment of CHAMP, GRACE, and GPS Data [J]. Journal of Geodesy, 2004, 78(2): 103-108.
[4]  MAYER-GüRR T, ILK K H, EICKER A, et al. ITG-CHAMP01: A CHAMP Gravity Field Model from Short Kinematic Arcs over a One-year Observation Period [J]. Journal of Geodesy, 2005, 78(8): 462-480.
[5]  YI W Y. The Earth's Gravity Field from GOCE [D]. München: Technische Universitt München, 2011.
[6]  YOU W, FAN D M, HUANG Q, Analysis of Short-arc Integral Approach to Recover the Earth's Gravitational Field [J].Chinese Journal of Geophysics, 2011, 54(11): 2745-2752.(游为, 范东明, 黄强. 卫星重力反演的短弧长积分法研究[J]. 地球物理学报, 2011, 54(11): 2745-2752.)
[7]  REUBELT T, AUSTEN G, GRAFAREND E W. Space Gravity Spectroscopy-determination of the Earth' s Gravitational Field by Means of Newton Interpolated LEO Ephemeris Case Studies on Dynamic (CHAMP Rapid Science Orbit) and Kinematic Orbits[J]. Advances in Geosciences, 2003, 1: 127-135.
[8]  SHEN Y Z. Study of Recovering Gravitational Potential Model from the Ephemerides of CHAMP [D]. Wuhan: Institute of Geodesy and Geophysics, Chinese Academy of Sciences, 2000.(沈云中. 应用CHAMP卫星星历精化地球重力场模型的研究[D]. 武汉: 中国科学院测量与地球物理研究所, 2000.)
[9]  DITMAR P, VAN DER SLUIJS A A E. A Technique for Modeling the Earth's Gravity Field on the Basis of Satellite Accelerations [J]. Journal of Geodesy, 2004, 78(2): 12-33.
[10]  DITMAR P, LIU X. Dependence of the Earth's Gravity Model Derived from Satellite Accelerations on a Priori Information [J]. Journal of Geodynamics, 2007, 43(2): 189-199.
[11]  HAN S C, JEKELI C, SHUM C K. Efficient Gravity Field Recovery Using in Situ Disturbing Potential Observables from CHAMP [J]. Geophysical Research Letters, 2002, 29(16): 1789-1793.
[12]  VISSER P, SNEEUW N, GERLACH C. Energy Integral Method for Gravity Field Determination from Satellite Orbit Coordinates [J]. Journal of Geodesy, 2003, 77(3): 207-216.
[13]  BEUTLER G, J?GGI A, MERVART L, et al. The Celestial Mechanics Approach: Theoretical Foundations [J]. Journal of Geodesy, 2010, 84(10): 605-624.
[14]  BEULTER G, J?GGI A, MERVART L, et al. The Celestial Mechanics Approach: Application to Data of the GRACE Mission [J]. Journal of Geodesy, 2010, 84(11): 661-681.
[15]  ILK K H, L?CHER A, MAYER-GüRR T. Do We Need New Gravity Field Recovery Techniques for the New Gravity Field Satellites? [C]//VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy. Berlin: Springer, 2008: 3-9.
[16]  MAYER-GüRR T, FEUCHTINGER M, KUSCHE J. A Comparison of Various Procedures for Global Gravity Field Recovery from CHAMP Orbits [M]. Berlin: Springer, 2005: 151-156.
[17]  REUBELT T, SNEEUW N, GRAFAREND E W. Comparison of Kinematic Orbit Analysis Methods for Gravity Field Recovery [C]//VII Hotine-Marussi Symposium on Mathematical Geodesy. Berlin: Springer, 2012: 259-265.
[18]  MIGLIACCIO F, REGUZZONI M, SANSO F, et al. GOCE Data Analysis: The Space-wise Approach and the First Space-wise Gravity Field Model[C]//Proceedings of the ESA Living Planet Symposium.Copenhagen:[s.n.], 2010.
[19]  PAIL R, BRUINSMA S, MIGLIACCIO F, et al. First GOCE Gravity Field Models Derived by Three Different Approaches [J]. Journal of Geodesy, 2011, 85(11): 819-843.
[20]  YI W Y. An Alternative Computation of a Gravity Field Model from GOCE [J]. Advances in space research, 2012, 50(3): 371-384.
[21]  ZHONG Bo, LUO Zhicai, LI Jiancheng, et al. Spectral Combination Method for Recovering the Earth's Gravity Field from High-low SST and SGG Data[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5): 735-742.(钟波, 罗志才, 李建成, 等. 联合高低卫-卫跟踪和卫星重力梯度数据恢复地球重力场的谱组合法[J]. 测绘学报, 2012, 41(5): 735-742. )
[22]  BAUR O, REUBELT T, WEIGELT M, et al. GOCE Orbit Analysis: Long-wavelength Gravity Field Determination Using the Acceleration Approach [J]. Advances in Space Research, 2012, 50(3): 385-396.
[23]  EGG-C. GOCE High Level Processing Facility:GOCE Level 2 Product Data Hand-book[EB/OL].[2012-12-25].www.iapg.bgutum.de/Projects/GOCE_HPF.
[24]  KUSCHE J, KLEES R. Regularization of Gravity Field Estimation from Satellite Gravity Gradients [J]. Journal of Geodesy, 2002, 76(6): 359-368.
[25]  DITMAR P, KUSCHE J, KLEES R. Computation of Spherical Harmonic Coefficients from Gravity Gradiometry Data to be Acquired by the GOCE Satellite: Regularization Issues [J]. Journal of Geodesy, 2003, 77(7): 465-477.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133