全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

全球海潮模型研究进展

DOI: 10.11867/j.issn.1001-8166.2015.05.0579, PP. 579-588

Keywords: 卫星测高,验潮站,潮汐分析,海潮模型,南极

Full-Text   Cite this paper   Add to My Lib

Abstract:

阐述潮汐分析方法和建模方法,归纳总结了FES,CSR,GOT,NAO,TPXO,EOT,DTU,HAMTIDE及OSU系列全球海潮模型的建立机构、使用数据及构建方法等。对比分析2010年后出现的几种新的海潮模型(FES2012,EOT11a,DTU10和HAMTIDE11a)在南大洋的M2振幅,发现模型间差异主要集中在浅水及极地地区,其中极地地区高精度卫星测高数据的缺少及海冰的季节性变化,是导致建模精度较差的主要原因。最后对海潮模型的发展方向提出一些建议。

References

[1]  King M A, Penna N T, Clarke P J, et al. Validation of ocean tide models around Antarctica using onshore GPS and gravity data[J]. Journal of Geophysical Research: Solid Earth(1978-2012), 2005, 110(B8),doi:10.1029/2004JB003390.
[2]  Han S C, Ray R D, Luthcke S B. Ocean tidal solutions in Antarctica from GRACE inter-satellite tracking data[J]. Geophysical Research Letters, 2007, 34(21),doi:10.1029/2007GLO31540.
[3]  Ray R D, Luthcke S B, Boy J P. Qualitative comparisons of global ocean tide models by analysis of intersatellite ranging data[J]. Journal of Geophysical Research: Oceans (1978-2012), 2009, 114(C9),doi:10.1029/2009JC005362.
[4]  Wang Weibo, Zhao Jinping. Accumulation sea ice concentration and its action on understanding arctic sea ice dramatic change[J]. Advances in Earth Science, 2014, 29(6):712-722.[王维波, 赵进平. 累积海冰密集度及其在认识北极海冰快速变化的作用[J]. 地球科学进展, 2014, 29(6):712-722.]
[5]  Stammer D, Ray R D, Andersen O B, et al. Accuracy assessment of global barotropic ocean tide models[J]. Reviews of Geophysics, 2014, 52(3): 243-282.
[6]  Gu Zhennian, Jin Wenjing, Wang Baowei. The comparison among ocean tide models and the ocean tide effect on the Earth rotation[J]. Progress in Astronomy, 1999, 17(2): 126-135.[顾震年, 金文敬,王保卫. 海潮模型的比较及海潮对地球自转变化的影响[J]. 天文学进展, 1999, 17(2): 126-135.]
[7]  Sun Heping, Zhou Jiangcun, Peng Bibo. Effect of ocean tide loading on satellite gravity determination[J]. Advances in Earth Science, 2006, 21(5):482-486.[孙和平, 周江存, 彭碧波. 确定卫星重力场中的海潮负荷影响问题[J]. 地球科学进展, 2006, 21(5): 482-486.]
[8]  Zhou Jiangcun, Sun Heping. Loading effect on high precision GPS observations[J]. Advances in Earth Science, 2007, 22(10): 1 036-1 040.[周江存, 孙和平. 高精度 GPS 观测中的负荷效应[J]. 地球科学进展, 2007, 22(10): 1 036-1 040.]
[9]  Shi Xianwu, Tan Jun, Guo Zhixing, et al. A review of risk assessment of storm surge disaster[J]. Advances in Earth Science, 2013, 28(8): 866-874.[石先武, 谭骏, 国志兴, 等. 风暴潮灾害风险评估研究综述[J]. 地球科学进展, 2013, 28(8): 866-874.]
[10]  Chen Zongyong. Tidology[M]. Beijing: Science Press,1980.[陈宗镛. 潮汐学[M]. 北京:科学出版社, 1980.]
[11]  Schwiderski E W. On charting global ocean tides[J]. Reviews of Geophysics, 1980, 18(1): 243-268.
[12]  Wang Hui, Liu Na, Li Benxia, et al. An overview of ocean predictability and ocean ensemble forecast[J]. Advances in Earth Science, 2014, 29(11): 1 212-1 225.[王辉, 刘娜, 李本霞, 等. 海洋可预报性和集合预报研究综述[J]. 地球科学进展, 2014, 29(11): 1 212-1 225.]
[13]  Bao Jingyang, Xu Jun. Tide Analysis from Altimeter Data and the Establishment and Application of Tide Model[M].Beijing: Surveying and Mapping Press, 2013.[暴景阳, 许军. 卫星测高数据的潮汐提取与建模应用[M]. 北京: 测绘出版社, 2013.]
[14]  Li Dawei, Li Jiancheng, Jin Taoyong, et al. Accuracy estimation of recent global ocean tide models using tide gauge data[J]. Journal of Geodesy and Geodynamics, 2012, 32(4): 106-110.[李大炜, 李建成, 金涛勇, 等. 利用验潮站资料评估全球海潮模型的精度[J]. 大地测量与地球动力学, 2012, 32(4): 106-110.]
[15]  Le Provost C, Genco M L, Lyard F, et al. Spectroscopy of the world ocean tides from a finite element hydrodynamic model[J]. Journal of Geophysical Research: Oceans (1978-2012), 1994, 99(C12): 24 777-24 797.
[16]  Lefevre F, Lyard F H, Le Provost C, et al. FES99: A global tide finite element solution assimilating tide gauge and altimetric information[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(9): 1 345-1 356.
[17]  Lyard F, Lefevre F, Letellier T, et al. Modelling the global ocean tides: Modern insights from FES2004[J]. Ocean Dynamics, 2006, 56(5/6): 394-415.
[18]  Carrère L, Lyard F, Cancet M, et al. FES2012: A new global tidal model taking advantage of nearly 20 years of altimetry[C]∥The Symposium 20 Years of Progress in Rodar Altimetry. Venice, 2012:20.
[19]  Eanes R J, Bettadpur S. The CSR 3.0 global ocean tide model: Diurnal and semi-diurnal ocean tides from Topex/Poseidon altimetry[R]∥Technical Report CRS-TM-95-05, Centre for Space Research. Texas: University of Texas, 1996.
[20]  Eanes R J, Schuler A. An improved global ocean tide model from TOPEX/Poseidon altimetry: CSR4. 0[C]∥EGS, 24th General Assembly.The Hagae, the Netherlands,1999: 19-23.
[21]  Ray R D. A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99. 2[R]∥NASA TM-1999-209478, National Aeronautics and Space Administration. Maryland: Goddard Space Flight Center,1999.
[22]  Ray R D. Precise comparisons of bottom-pressure and altimetric ocean tides[J]. Journal of Geophysical Research: Oceans, 2013, 118(9): 4 570-4 584.
[23]  Matsumoto K, Takanezawa T, Ooe M. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan[J]. Journal of Oceanography, 2000, 56(5): 567-581.
[24]  Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2): 183-204.
[25]  Egbert G D, Ray R D. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data[J]. Nature,2000, 405(6 788): 775-778.
[26]  Savcenko R, Bosch W. EOT08a—A new global tide model from multi-mission altimetry[R]∥Report No. 81 Deutsches Geod-tisches Forschungsinstitut (DGFI). München, Germany, 2008.
[27]  Savcenko R, Bosch W. EOT10a—A new global tide model from multi-mission altimetry[C]∥EGU General Assembly Conference Abstracts, 2010, 12: 9 624.
[28]  Savcenko R, Bosch W. EOT11a—Empirical ocean tide model from multi-mission satellite altimetry[R]∥Report No. 89 Deutsches Geodtisches Forschungsinstitut (DGFI). München, Germany, 2012.
[29]  Cheng Y, Andersen O B. Multimission empirical ocean tide modeling for shallow waters and polar seas[J]. Journal of Geophysical Research: Oceans (1978-2012), 2011, 116(C11),doi:10.1029/2011JCD07172.
[30]  Andersen O B, Egbert G, Erofeeva L, et al. Non-linear tides in shallow water regions from multi-mission satellite altimetry & the Andersen 06 Global Ocean Tide Model[C]∥AGU WPGM Meeting. Beijing, 2006.
[31]  Taguchi E, Stammer D, Zahel W. Inferring deep ocean tidal energy dissipation from the global high-resolution data-assimilative HAMTIDE model[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4 573-4 592.
[32]  Fok H S. Ocean Tides Modeling Using Satellite Altimetry[D]. Columbus: The Ohio State University, 2012.
[33]  Wang Yihang, Fang Guohong, Wei Zexun, et al. Accuracy assessment of global ocean tide models base on satelite altimetry[J]. Advances in Earth Science, 2010, 25(4): 353-362.[汪一航, 方国洪, 魏泽勋, 等. 基于卫星高度计的全球大洋潮汐模式的准确度评估[J]. 地球科学进展, 2010, 25(4): 353-362.]

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133