全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

宇宙成因核素10Be揭示的北祁连山侵蚀速率特征

DOI: 10.11867/j.issn.1001-8166.2015.02.0268, PP. 268-275

Keywords: 宇宙成因核素,流域平均侵蚀速率,坡度,降水量,祁连山

Full-Text   Cite this paper   Add to My Lib

Abstract:

山脉侵蚀速率的大小和时空分布信息是研究山脉构造—气候相互作用和地貌演化的关键切入点,其大小是受气候还是构造控制争论已久。宇宙成因核素10Be方法为从千年至万年尺度上定量研究流域平均侵蚀速率提供了一种先进和快捷的技术手段,为揭示侵蚀速率与现代气候和构造地貌因子的关系并进行相关分析提供了基础。利用该方法对北祁连山近现代侵蚀速率进行了研究。所采集的9个流域现代河沙样品,结合前人数据进行共同分析,结果显示该区侵蚀速率的变化范围为18.7~833mm/ka,北祁连山中段的侵蚀速率约为323mm/ka,该区侵蚀速率与降雨量没有明显的对应关系,但与流域平均坡度呈现很好的非线性关系,揭示坡度是该区侵蚀速率的最主要控制因素。通过对比北祁连山地表平均侵蚀速率和该区域的断层垂直滑动速率发现整体上该区域地表侵蚀速率要低于祁连山北缘断层的垂直滑动速率,反映了北祁连山正处于地形抬升和生长的过程之中。

References

[1]  Beaumont C, Jamieson R A, Nguyen M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414(6 865): 738-742.
[2]  Dahlen F A, Suppe J. Mechanics, growth, and erosion of mountain belts[J]. Geological Society of America Special Papers, 1988, 218: 161-178.
[3]  Burbank D W, Blythe A E, Putkonen J, et al. Decoupling of erosion and precipitation in the himalayas[J]. Nature, 2003, 426(6 967): 652-655.
[4]  Godard V, Bourlès D L, Spinabella F, et al. Dominance of tectonics over climate in himalayan denudation[J]. Geology, 2014, 42(3): 243-246.
[5]  Molnar P, England P. Late cenozoic uplift of mountain ranges and global climate change: Chicken or egg?[J]. Nature, 1990, 346(6 279): 29-34.
[6]  Raymo M E, Ruddiman W F. Tectonic forcing of late cenozoic climate[J]. Nature, 1992, 359(6 391): 117-122.
[7]  Ding Yongjian, Zhou Chenghu, Shao Ming’an,et al. Studies of Earth surface proceses: Progress and prospect[J]. Advances in Earth Science, 2013, 28(4): 407-419.[丁永建,周成虎,邵明安,等. 地表过程研究进展与趋势[J]. 地球科学进展, 2013, 28(4): 407-419.]
[8]  Granger D E, Kirchner J W, Finkel R. Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment[J]. Journal of Geology, 1996, 104: 249.
[9]  Brown E T, Stallard R F, Larsen M C, et al. Denudation rates determined from the accumulation of in situ-produced 10 Be in the luquillo experimental forest, Puerto Rico[J]. Earth and Planetary Science Letters, 1995, 129(1/4): 193-202.
[10]  Granger D E, Lifton N A, Willenbring J K. A cosmic trip: 25 years of cosmogenic nuclides in geology[J]. Geological Society of America Bulletin, 2013,125(9/10): 1379-1402.
[11]  Wang Xingshan, Zhang Jie, Qin Zhong. Methods for measuring erosion rate of rock: An overview[J]. Advances in Earth Science, 2013, 28(4): 447-454.[王兴山,张捷,秦中. 岩石侵蚀速率测算方法研究综述及展望[J]. 地球科学进展, 2013, 28(4): 447-454.]
[12]  Bookhagen B, Strecker M R. Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: Examples from the southern central andes[J]. Earth and Planetary Science Letters, 2012, 327/328: 97-110.
[13]  Wobus C, Heimsath A, Whipple K, et al. Active out-of-sequence thrust faulting in the central nepalese himalaya[J]. Nature, 2005, 434(7 036): 1 008-1 011.
[14]  Yao T, Masson-Delmotte V, Gao J, et al. A review of climatic controls on δ 18 O in precipitation over the Tibetan Plateau: Observations and simulations[J]. Reviews of Geophysics, 2013, 51(4): 525-548.
[15]  Liu Yong, Zou Songbing. A study on the distributing climatic models in arid mountainous area-distributing temperature and precipitation models in high spatial resolution in the Qilian Mountains[J]. Journal of Lanzhou University(Natural Sciences), 2006, 42(1): 7-12.[刘勇, 邹松兵. 祁连山地区高分辨率气温降水量分布模型[J]. 兰州大学学报:自然科学版, 2006, 42(1): 7-12.]
[16]  Chen Shaoyong, Dong Anxiang, Han Tong. Differences in summer precipitation between the east and west of Qilian Mountains and its contributing factors[J]. Journal of Nanjing Institute of Meteorology,2007, 30(5): 715-719.[陈少勇, 董安祥, 韩通. 祁连山东、西部夏季降水量时空分布的差异及其成因研究[J]. 南京气象学院学报, 2007, 30(5): 715-719.]
[17]  Hetzel R. Active faulting, mountain growth, and erosion at the margins of the Tibetan Plateau constrained by in situ-produced cosmogenic nuclides[J]. Tectonophysics, 2013, 582: 1-24.
[18]  Palumbo L, Hetzel R, Tao M X, et al. Catchment-wide denudation rates at the margin of NE Tibet from in situ-produced cosmogenic 10 Be[J]. Terra Nova, 2011, 23(1): 42-48.
[19]  Fang X M, Liu D L, Song C H, et al. Oligocene slow and miocene-quaternary rapid deformation and uplift of the Yumu Shan and north Qilian Shan: Evidence from high-resolution magnetostratigraphy and tectonosedimentology[J]. Geological Society, London, Special Publications, 2012, 373:1-12.
[20]  Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5 547): 1 671-1 677.
[21]  Fang X M, Zhao Z J, Li J J, et al. Magnetostratigraphy of the late cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan Plateau uplift[J]. Science in China(Series D), 2005, 48(7): 1 040-1 051.
[22]  Zhang Huiping, Zhang Peizhen, Zheng Dewen, et al. Tectonic geomorphology of the Qilian Shan: Insight into the late Cenozoic landscape evolution and deformation in the north eastern Tibetan Plateau[J]. Quaternary Sciences, 2012, 32(5): 907-920.[张会平, 张培震, 郑德文, 等. 祁连山构造地貌特征:青藏高原东北缘晚新生代构造变形和地貌演化过程的启示[J]. 第四纪研究, 2012, 32(5): 907-920.]
[23]  Zhang P Z, Shen Z, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32(9): 809-812.
[24]  Dunai T J. Cosmogenic Nuclides-principles, Concepts and Applications in the Earth Surface Sciences[M]. UK: Cambridge University Press, 2010: 187.
[25]  Lal D. Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models[J]. Earth and Planetary Science Letters, 1991, 104(2/4): 424-439.
[26]  Nishiizumi K, Lal D, Klein J, et al. Production of 10 Be and 26 Al by cosmic rays in terrestrial quartz in situ and implications for erosion rates[J]. Nature, 1986, 319(6 049): 134-136.
[27]  Bierman P, Steig E J. Estimating rates of denudation using cosmogenic isotope abundances in sediment[J]. Earth Surface Processes and Landforms, 1996, 21: 125-139.
[28]  Greensfelder Liese. Subtleties of sand reveal how mountains crumble[J]. Science,2002, 295(5 553): 256-258.
[29]  Ouimet W B, Whipple K X, Granger D E. Beyond threshold hillslopes: Channel adjustment to base-level fall in tectonically active mountain ranges[J]. Geology, 2009, 37(7): 579-582.
[30]  Roering J J, Kirchner J W, Dietrich W E. Hillslope evolution by nonlinear, slope-dependent transport: Steady state morphology and equilibrium adjustment timescales[J].Journal of Geophysical Research, 2001, 106(B8): 16 499-16 513.
[31]  Burbank D W, Anderson R S. Tectonic Geomorphology[M]. New Jersey: Black Publishing, 2000.
[32]  Hu Xiaofei, Pan Baotian, Kirby E, et al. Spatial differences in rock uplift rates inferred from channel steepness indices along the northern flank of the Qilian Mountain, northeast Tibetan Plateau[J]. Chinese Science Bulletin, 2010, 55(23): 2 329-2 338.[胡小飞, 潘保田, Kirby E, 等. 河道陡峭指数所反映的祁连山北翼抬升速率的东西差异[J]. 科学通报, 2010, 55(23): 2 329-2 338.]
[33]  Hetzel R, Niedermann S, Tao M X, et al. Low slip rates and long-term preservation of geomorphic features in central Asia[J]. Nature, 2002, 417(6 887): 428-432.
[34]  Hetzel R, Tao M X, Stokes S, et al. Late pleistocene/holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau[J]. Tectonics, 2004, 23(6), doi:10.1029/2004TC001653.
[35]  Zheng D W, Clark M K, Zhang P Z, et al. Erosion, fault initiation and topographic growth of the north Qilian Shan (northern Tibetan Plateau)[J]. Geosphere, 2010, 6(6): 937-941.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133