全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

河流溶解硅的生物地球化学循环研究综述

DOI: 10.11867/j.issn.1001-8166.2015.01.0050, PP. 50-59

Keywords: 河流溶解硅,硅稳定同位素组成,硅循环,化学风化

Full-Text   Cite this paper   Add to My Lib

Abstract:

河流溶解硅(DSi)承载着陆地表生过程的环境信息,其输入、迁移、转化和输出受多种因素制约。在全球硅酸盐岩风化过程中,31.53%~64.87%的DSi被陆地植被吸收,仅12.91%迁移至河流,在向海洋输送过程中,河流DSi又受到水生生物吸收、逆风化作用及“人造湖效应”等因素的影响,输出量进一步减少,弱化了海洋系统的“生物泵”作用;不多的研究表明全球河流DSi浓度变化介于138~218μmol/L之间,空间差异显著,有必要量化各影响因素的贡献,建立多因素控制的河流DSi输出通量模型;与地壳主要硅酸盐岩的δ30Si值(约为-0.5‰)相比,全球河流DSi的δ30Si值变化范围较大(介于-0.2‰~3.4‰之间)且显著正偏,分馏系数达0.3‰~3.9‰。这是由于流域内Si同位素的无机分馏和有机分馏2种动力分馏过程所导致。因此,探讨河流DSi来源、迁移及转化机制是未来深入研究河流DSi循环的关键问题。

References

[1]  Froelich P N, Blanc V, Mortlock R A, et al. River fluxes of dissolved silica to the ocean were higher during glacials: Ge/Si in diatoms, rivers, and oceans[J]. Paleoceanography, 1992, 7(6): 739-767.
[2]  Bernard C Y, Heinze C, Segschneider J, et al. Contribution of riverine nutrients to the silicon biogeochemistry of the global ocean—A model study[J]. Biogeosciences, 2011, 8(3):551.
[3]  Tréguer P J, De La Rocha C L. The world ocean silica cycle[J]. Annual Review of Marine Science, 2013, 5:477-501.
[4]  Conley D J, Schelske C L, Stoermer E F. Modification of the biogeochemical cycle of silica with eutrophication[J]. Marine Ecology Progress Series, 1993, 101(1/2): 179-192.
[5]  Hartmann J, Levy J, Kempe S. Increasing dissolved silica trends in the Rhine River: An effect of recovery from high P loads?[J]. Limnology, 2011, 12(1): 63-73.
[6]  Humborg C, Conley D J, Rahm L, et al. Silicon retention in river basins: Far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments[J]. AMBIO: A Journal of the Human Environment, 2000, 29(1): 45-50.
[7]  Xiangbin R, Zhigang Y, Hongtao C, et al. Silicon and sediment transport of the Changjiang River (Yangtze River): Could the Three Gorges Reservoir be a filter?[J]. Environmental Earth Sciences, 2013, 70(4): 1 881-1 893.
[8]  Liu Yingjun. Element Geochemistry[M]. Beijing: Science Press, 1984.[刘英俊. 元素地球化学[M]. 北京: 科学出版社, 1984.]
[9]  Li Rencheng, Fan Jun, Gao Chonghui. Advances in modern phytolith research[J]. Advances in Earth Science, 2013, 28(12): 1 287-1 295.[李仁成, 樊俊, 高崇辉. 植硅体现代过程研究进展[J]. 地球科学进展, 2013, 28(12): 1 287-1 295.]
[10]  Sommer M, Kaczorek D, Kuzyakov Y, et al. Silicon pools and fluxes in soils and landscapes—A review[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(3): 310-329.
[11]  Lucas Y, Luizao F J, Chauvel A, et al. The relation between biological activity of the rain forest and mineral composition of soils[J]. Science, 1993, 260(5 107): 521-523.
[12]  Meunier J D, Colin F, Alarcon C. Biogenic silica storage in soils[J]. Geology, 1999, 27(9): 835-838.
[13]  Georg R B, Reynolds B C, West A J, et al. Silicon isotope variations accompanying basalt weathering in Iceland[J]. Earth and Planetary Science Letters, 2007, 261(3): 476-490.
[14]  Hughes H J, Sondag F, Santos R V, et al. The riverine silicon isotope composition of the Amazon Basin[J]. Geochimica et Cosmochimica Acta, 2013, 121:637-651.
[15]  Cui Zhijiu, Yang Jianqiang, Chen Yixin. The type and evolution of the granite landforms in China[J]. Acta Geographica Sinica, 2007, 62(7): 675-690.[崔之久, 杨建强, 陈艺鑫. 中国花岗岩地貌的类型特征与演化[J]. 地理学报, 2007, 62(7): 675-690.]
[16]  Siever R. Silica in the oceans: Biological-geochemical interplay[M]//Scientists on Gaia. Cambridge: MZT Press, 1991:287-295.
[17]  Maldonado M, Carmona M C, Uriz M J, et al. Decline in Mesozoic reef-building sponges explained by silicon limitation[J]. Nature, 1999, 401(6 755): 785-788.
[18]  Harper H E, Knoll A H. Silica, diatoms, and Cenozoic radiolarian evolution[J]. Geology, 1975, 3(4): 175-177.
[19]  Conley D J, Kilham S S, Theriot E. Differences in silica content between marine and freshwater diatoms[J]. Limnology and Oceanography, 1989, 34(1): 205-213.
[20]  Dürr H H, Meybeck M, Hartmann J, et al. Global spatial distribution of natural riverine silica inputs to the coastal zone[J]. Biogeosciences, 2011, 8(3):597-620.
[21]  Conley D J. Riverine contribution of biogenic silica to the oceanic silica budget[J]. Limnology and Oceanography, 1997, 42(4): 774-777.
[22]  Gamier J, Billen G, Coste M. Seasonal succession of diatoms and Chlorophyceae in the drainage network of the Seine River: Observations and modeling[J]. Limnology and Oceanography, 1995, 40(4): 750-765.
[23]  Admiraal W, Breugem P, Jacobs D, et al. Fixation of dissolved silicate and sedimentation of biogenic silicate in the lower river Rhine during diatom blooms[J]. Biogeochemistry, 1990, 9(2): 175-185.
[24]  Fulweiler R W, Nixon S W. Terrestrial vegetation and the seasonal cycleof dissolved silica in a southern New Englandcoastal river[J]. Biogeochemistry, 2005, 74(1): 115-130.
[25]  Struyf E, Conley D J. Emerging understanding of the ecosystem silica filter[J]. Biogeochemistry, 2012, 107(1/3): 9-18.
[26]  Chen N, Wu Y, Wu J, et al. Natural and human influences on dissolved silica export from watershed to coast in Southeast China[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(1): 95-109.
[27]  Carey J C, Fulweiler R W. Human activities directly alter watershed dissolved silica fluxes[J]. Biogeochemistry, 2012, 111(1/3): 125-138.
[28]  Sun C, Shen Z, Liu R, et al. Historical trend of nitrogen and phosphorus loads from the upper Yangtze River Basin and their responses to the Three Gorges Dam[J]. Environmental Science and Pollution Research, 2013, 20(12): 8 871-8 880.
[29]  Tallberg P, Räike A, Lukkari K, et al. Horizontal and vertical distribution of biogenic silica in coastal and profundal sediments of the Gulf of Finland (northeastern Baltic Sea)[J]. Boreal Environment Research, 2012, 17(5): 347-362.
[30]  Jung S W, Kwon O Y, Yun S M, et al. Impacts of dam discharge on river environments and phytoplankton communities in a regulated river system, the lower Han River of South Korea[J]. Journal of Ecology and Environment, 2014, 37(1):1-11.
[31]  Gao Y, Wang B, Liu X, et al. Impacts of river impoundment on the riverine water chemistry composition and their response to chemical weathering rate[J]. Frontiers of Earth Science, 2013, 7(3): 351-360.
[32]  Zhu K, Bi Y, Hu Z. Responses of phytoplankton functional groups to the hydrologic regime in the Daning River, a tributary of Three Gorges Reservoir, China[J]. Science of the Total Environment, 2013, 450:169-177.
[33]  Hans Wedepohl K. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 1995, 59(7): 1 217-1 232.
[34]  Epstein E. The anomaly of silicon in plant biology[J]. Proceedings of the National Academy of Sciences, 1994, 91(1): 11-17.
[35]  Epstein E. Silicon[J]. Annual review of Plant Biology, 1999, 50(1): 641-664.
[36]  Datnoff L E, Snyder G H, Korndrfer G H. Silicon in Agriculture[M].Netherlands: Elsevier Science, 2001.
[37]  Gaillardet J, Dupré B, Louvat P, et al. Global silicate weathering and CO 2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/4): 3-30.
[38]  Garnier J, Beusen A, Thieu V, et al. N∶P∶Si nutrient export ratios and ecological consequences in coastal seas evaluated by the ICEP approach[J]. Global Biogeochemical Cycles, 2010, 24(4), doi:10.1029/2009GB003583.
[39]  Tréguer P, Nelson D M, Van Bennekom A J, et al. The silica balance in the world ocean: A reestimate[J]. Science, 1995, 268(5 209): 375-379.
[40]  Alexandre A, Meunier J, Colin F, et al. Plant impact on the biogeochemical cycle of silicon and related weathering processes[J]. Geochimica et Cosmochimica Acta, 1997, 61(3): 677-682.
[41]  Norris A R, Hackney C T. Silica content of a mesohaline tidal marsh in North Carolina[J]. Estuarine, Coastal and Shelf Science, 1999, 49(4): 597-605.
[42]  Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 283(7): 641-683.
[43]  Bartoli F. The biogeochemical cycle of silicon in two temperate forest ecosystems[J]. Ecological Bulletins, 1983, 35:469-476.
[44]  Sommer M, Kaczorek D, Kuzyakov Y, et al. Silicon pools and fluxes in soils and landscapes—A review[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(3): 310-329.
[45]  Conley D J. Terrestrial ecosystems and the global biogeochemical silica cycle[J]. Global Biogeochemical Cycles, 2002, 16(4): 61-68.
[46]  Tao Zhen, Zhang Chao, Gao Quanzhou, et al. A review of the biogeochemical cycle of silicon in terrestrial ecosystems[J]. Advances in Earth Science, 2012, 27(7): 725-732.[陶贞, 张超, 高全洲, 等. 陆地硅的生物地球化学循环研究进展[J]. 地球科学进展, 2012, 27(7): 725-732.]
[47]  Ran Xiangbin, Yu Zhigang, Zang Jiaye, et al. Advances in the influence of Earth surface process and human activity on silicon output[J]. Advances in Earth Science, 2013, 28(5): 577-587.[冉祥滨, 于志刚, 臧家业, 等. 地表过程与人类活动对硅产出影响的研究进展[J]. 地球科学进展, 2013, 28(5): 577-587.]
[48]  Schelske C L, Stoermer E F, Conley D J, et al. Early eutrophication in the lower great lakes[J]. Science, 1983, 222(4 621): 320-322.
[49]  Hughes H J, Sondag F, Cocquyt C, et al. Effect of seasonal biogenic silica variations on dissolved silicon fluxes and isotopic signatures in the Congo River[J]. Limnology and Oceanography, 2011, 56(2): 551-561.
[50]  Domingues R B, Barbosa A B, Galvão H M. River damming leads to decreased phytoplankton biomass and disappearance of cyanobacteria blooms[J]. Estuarine, Coastal and Shelf Science, 2014, 136:129-138.
[51]  Cook P L, Aldridge K T, Lamontagne S, et al. Retention of nitrogen, phosphorus and silicon in a large semi-arid riverine lake system[J]. Biogeochemistry, 2010, 99(1/3): 49-63.
[52]  Harrison J A, Frings P J, Beusen A H, et al. Global importance, patterns, and controls of dissolved silica retention in lakes and reservoirs[J]. Global Biogeochemical Cycles, 2012, 26(2), doi:10.1029/2011GB004228.
[53]  Humborg C, Pastuszak M, Aigars J, et al. Decreased silica land-sea fluxes through damming in the Baltic Sea catchment-significance of particle trapping and hydrological alterations[J]. Biogeochemistry, 2006, 77(2): 265-281.
[54]  Hughes H J, Bouillon S, André L, et al. The effects of weathering variability and anthropogenic pressures upon silicon cycling in an intertropical watershed (Tana River, Kenya)[J]. Chemical Geology, 2012, 308:18-25.
[55]  Ran X, Yu Z, Yao Q, et al. Silica retention in the Three Gorges Reservoir[J]. Biogeochemistry, 2013, 112(1/3): 209-228.
[56]  Mackenzie F T, Garrels R M. Chemical mass balance between rivers and oceans[J]. American Journal of Science, 1966, 264(7): 507-525.
[57]  Garrels R M. Silica: Role in the buffering of natural waters[J]. Science, 1965, 148(3 666): 69.
[58]  Michalopoulos P, Aller R C. Rapid clay mineral formation in Amazon delta sediments: Reverse weathering and oceanic elemental cycles[J]. Science, 1995, 270:614-617.
[59]  Michalopoulos P, Aller R C. Early diagenesis of biogenic silica in the Amazon delta: Alteration, authigenic clay formation, and storage[J]. Geochimica et Cosmochimica Acta, 2004, 68(5): 1 061-1 085.
[60]  Presti M, Michalopoulos P. Estimating the contribution of the authigenic mineral component to the long-term reactive silica accumulation on the western shelf of the Mississippi River Delta[J]. Continental Shelf Research, 2008, 28(6): 823-838.
[61]  Humborg C, Smedberg E, Medina M R, et al. Changes in dissolved silicate loads to the Baltic Sea—The effects of lakes and reservoirs[J]. Journal of Marine Systems, 2008, 73(3): 223-235.
[62]  Humborg C, Ittekkot V, Cociasu A, et al. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure[J]. Nature, 1997, 386(6 623): 385-388.
[63]  Jansen N, Hartmann J, Lauerwald R, et al. Dissolved silica mobilization in the conterminous USA[J]. Chemical Geology, 2010, 270(1): 90-109.
[64]  Moosdorf N, Hartmann J, Lauerwald R. Changes in dissolved silica mobilization into river systems draining North America until the period 2081-2100[J]. Journal of Geochemical Exploration, 2011, 110(1): 31-39.
[65]  Lauerwald R, Hartmann J, Moosdorf N, et al. Retention of dissolved silica within the fluvial system of the conterminous USA[J]. Biogeochemistry, 2013, 112(1/3): 637-659.
[66]  Beusen A, Bouwman A F, Dürr H H, et al. Global patterns of dissolved silica export to the coastal zone: Results from a spatially explicit global model[J]. Global Biogeochemical Cycles, 2009, 23(4), doi:10.1029/2008GB003281.
[67]  Clarke F W. The Data of Geochemistry[M]. Washington: US Government Printing Office Nabu Press, 1920.
[68]  Livingstone D A. Chemical Composition of Rivers and Lakes[M]. California: The University of California Press, 1963.
[69]  Meybeck M. Concentrations des eaux fluviales en elements majeurs et apports en solution aux oceans[J]. Revue de Géologie Dynamique et de Géographie Physique, 1979, 21(3): 215-246.
[70]  Meybeck M. Global occurrence of major elements in rivers[J]. Treatise on Geochemistry, 2003, 5:207-223.
[71]  Ding Tiping. Research progress of silicon isotope geochemistry[J]. Bulletin of Mineralogy Petrology and Geochemistry, 1990, (2): 99-101.[丁悌平. 硅同位素地球化学研究进展[J]. 矿物岩石地球化学通报, 1990, (2): 99-101.]
[72]  De La Rocha C L, Brzezinski M A, DeNiro M J. A first look at the distribution of the stable isotopes of silicon in natural waters[J]. Geochimica et Cosmochimica Acta, 2000, 64(14): 2 467-2 477.
[73]  Ding Tiping. Silicon Isotope Geochemistry[M]. Beijing: Geological Publishing House, 1994.[丁悌平. 硅同位素地球化学[M]. 北京: 地质出版社, 1994.]
[74]  Ziegler K, Chadwick O A, Kelly E F, et al. The delta Si 30 values of soil weathering profiles: Indicators of Si pathways at the lithosphere/hydro(bio)sphere interface[J]. Geochimica et Cosmochimica Acta, 2000, 66(15A): A881.
[75]  Douthitt C B. The geochemistry of the stable isotopes of silicon[J]. Geochimica et Cosmochimica Acta, 1982, 46(8): 1 449-1 458.
[76]  Ding T, Wang C, Zhang F, et al. Silicon isotope fractionation in some surface processes (A study on river water and plants)[J]. Chinese Science Bulletin, 1998, 43:33.
[77]  Ding T, Wan D, Wang C, et al. Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 205-216.
[78]  Ding T P, Ma G R, Shui M X, et al. Silicon isotope study on rice plants from the Zhejiang Province, China[J]. Chemical Geology, 2005, 218(1): 41-50.
[79]  Opfergelt S, Cardinal D, Henriet C, et al. Silicon isotopic fractionation by banana (Musa spp.) grown in a continuous nutrient flow device[J]. Plant and Soil, 2006, 285(1/2): 333-345.
[80]  Yanhe L, Tiping D, Defang W. Experimental study of silicon isotope dynamic fractionation and its application in geology[J]. Chinese Journal of Geochemistry, 1995, 14(3): 212-219.
[81]  De La Rocha C L, Brzezinski M A, DeNiro M J. Fractionation of silicon isotopes by marine diatoms during biogenic silica formation[J]. Geochimica et Cosmochimica Acta, 1997, 61(23): 5 051-5 056.
[82]  Varela D E, Pride C J, Brzezinski M A. Biological fractionation of silicon isotopes in Southern Ocean surface waters[J]. Global Biogeochemical Cycles, 2004, 18(1), doi:10.1029/2003GB002140.
[83]  Alleman L Y, Cardinal D, Cocquyt C, et al. Silicon isotopic fractionation in Lake Tanganyika and its main tributaries[J]. Journal of Great Lakes Research, 2005, 31(4): 509-519.
[84]  Gao Jianfei, Ding Tiping, Tian Shihong, et al. Silicon isotope compositions of suspended matter in the Yellow River, China and its significance in geological environment[J]. Acta Geologica Sinica, 2011, 85(10): 1 613-1 628.[高建飞, 丁悌平, 田世洪, 等. 黄河水及其悬浮物硅同位素组成的变化特征及其地质环境意义[J]. 地质学报, 2011, 85(10): 1 613-1 628.]
[85]  van Dokkum H P, Hulskotte J H, Kramer K J, et al. Emission, fate and effects of soluble silicates (waterglass) in the aquatic environment[J]. Environmental Science & Technology, 2004, 38(2): 515-521.
[86]  Dìrr H H, Meybeck M, Hartmann J, et al. Global spatial distribution of natural riverine silica inputs to the coastal zone[J]. Biogeosciences, 2011, 8(3):597-620.
[87]  Lerman A. Wheathering rates and major transport processes an introduction[J]. Physical and Chemical Weathering in Geochemical Cycles, 1988, 251:1-10.
[88]  Hurd D C. Physical and chemical properties of siliceous skeletons[M]//Silicon Geochemistry and Biogeochemistry. London: Academic Press, 1983:187-244.
[89]  Moulton K L, West J, Berner R A. Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering[J]. American Journal of Science, 2000, 300(7): 539-570.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133