Schaller R. Mechanical spectroscopy of interface stress relaxation in metal-matrix composites[J]. Materials Science and Engineering: A, 2006, 442(1-2): 423-428.
[2]
Mondal D P, Ramakrishnan N, Das S. FEM modeling of the interface and its effect on the elastio-plastic behavior of metal matrix composites[J]. Materials Science and Engineering: A, 2006, 433(1-2): 286-290.
[3]
Pyo S H, Lee H K. An elastoplastic damage model for metal matrix composites considering progressive imperfect interface under transverse loading[J]. International Journal of Plasticity, 2010, 26(1): 25-41.
[4]
姜云鹏, 岳珠峰, 万建松. 界面特性对短纤维金属基复合材料蠕变行为的影响[J]. 计算力学学报, 2003, 20(6): 743-748. Jiang Yunpeng, Yue Zhufeng, Wan Jiansong. On the study of the influence of the interphase properties on the creep behavior of short fiber enforced metal matrix composites[J]. Chinese Journal of Computational Mechanics, 2003, 20(6): 743-748.
[5]
Aghdam M M, Gorji M, Falahatgar S R. Interface damage of SiC/Ti metal matrix composites subjected to combined thermal and axial shear loading[J]. Computational Materials Science, 2009, 46(3): 626-631.
[6]
Shi L, Yan J C, Han Y F, et al. Behaviors of oxide layer at interface between semi-solid filler metal and aluminum matrix composites during vibration[J]. Journal of Materials Science & Technology, 2011, 27(8): 746-752.
[7]
Li Y F, Li Z H. Transverse creep and stress relaxation induced by interface diffusion in unidirectional metal matrix composites[J]. Composites Science and Technology, 2012, 72(13): 1608-1612.
[8]
康国政, 高庆, 刘世楷, 等. 界面对短纤维增强金属基复合材料力学行为的影响[J]. 复合材料学报, 1999, 16(1): 35-40. Kang Guozheng, Gao Qing, Liu Shikai, et al. Interfacial effects on mechanical behavior of short fiber reinforced metal matrix composites[J]. Acta Materiae Compositae Sinica, 1999, 16(1): 35-40.
[9]
Aghion E, Bronfin B. Magnesium alloys development towards the 21st century[J]. Materials Science Forum, 2000, 350-351: 19-28.
[10]
田君, 李文芳, 韩立发, 等. 镁基复合材料的研究现状及发展[J]. 材料导报, 2009, 23(17): 71-74. Tian Jun, Li Wenfang, Han Lifa, et al. Research and development of magnesium matrix composites[J]. Materials Review, 2009, 23(17): 71-74.
[11]
Totry E, Molina-Aldareguía J M, González C, et al. Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites[J]. Composites Science and Technology, 2010, 70(6): 970-980.
[12]
Wang J, Beyerlein I J, Mara N A, et al. Interface-facilitated deformation twinning in copper within submicron Ag-Cu multilayered composites[J]. Scripta Materialia, 2011, 64(12): 1083-1086.
[13]
Zhang Y H, Wu G H. Comparative study on the interface and mechanical properties of T700/Al and M40/Al composites[J]. Rare Metals, 2010, 29(1): 102-107.
[14]
Zhang R L, Huang Y D, Liu L, et al. Effect of the molecular weight of sizing agent on the surface of carbon fibres and interface of its composites[J]. Applied Surface Science, 2011, 257(6): 1840-1844.
[15]
Zhang Y H, Wu G H. Interface and thermal expansion of carbon fiber reinforced aluminum matrix composites[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(11): 2148-2151.
[16]
Udayakumar A, Balasubramanian M, Gopala H B, et al. Influence of the type of interface on the tribological characteristics of ICVI generated SiCf/SiC composites[J]. Wear, 2011, 271(5-6): 859-865.
[17]
田君. 硅酸铝短纤维增强AZ91D复合材料蠕变行为的研究[D]. 广州: 华南理工大学, 2011: 32-67. Tian Jun. Investigation on creep behaviors of Al2O3-SiO2(sf)/AZ91D composite[D]. Guangzhou: South China University of Technology, 2011: 32-67.
[18]
康国政, 高庆. 短纤维增强金属基复合材料基体中的应力分布及其变形特征[J]. 复合材料学报, 2000, 17(2): 20-24. Kang Guozheng, Gao Qing. Stress distribution and deformation characteristics of matrix in short fiber reinforced metal matrix composites[J]. Acta Materiae Compositae Sinica, 2000, 17(2): 20-24.
[19]
刘贯军. Al2O3-SiO2(sf)/AZ91D复合材料的界面结构、时效特性和摩擦磨损性能研究[D]. 广州: 华南理工大学, 2007: 39-65. Liu Guanjun. Investigation on interface structure, aging characteristics and friction and wear properties of Al2O3-SiO2(sf)/AZ91D composite[D]. Guangzhou: South China University of Technology, 2007: 39-65.