杨乃宾. 新一代大型客机复合材料结构[J]. 航空学报, 2008, 29(3): 596-609. Yang Naibin. Composite structures for new generation large commercial jet[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 596-609.
[2]
Ahopelto E. Application of low temperature curing prepregs and vacuum bag molding technique to the manufacturing of a composite wing, AIAA-1986-1019[R]. Reston: AIAA, 1986
[3]
Anderson T C, Holzwarth R C. Design and manufacture of low-cost composite-bonded wing, AIAA-1998-1870[R]. Reston: AIAA, 1998.
[4]
Klein D J, Kosmatka J B. Novel designs and manufacturing processes of composite wings for small unmanned aircraft, AIAA-2008-2249[R]. Reston: AIAA, 2008.
[5]
Musicman A, Reinert H. Composite wing/fuselage integral concept, AIAA-1980-0744[R]. Reston: AIAA, 1980.
[6]
Teufel P, Maxwell M, Gardiner R. Low cost composite manufacturing method for a general aviation aircraft wing, AIAA-2003-2768[R]. Reston: AIAA, 2003.
[7]
罗楚养, 益小苏, 李伟东, 等. 整体成型复合材料模型机翼设计、制造与验证[J]. 航空材料学报, 2011, 31(4): 69-76. Luo Chuyang, Yi Xiaosu, Li Weidong, et al. Design, manufacturing and testing of composite wing model via integral forming process[J]. Journal of Aeronautical Materials, 2011, 31(4): 69-76.
[8]
白江波, 熊峻江, 李雪芹, 等. 复合材料机翼整体成型技术研究[J]. 复合材料学报, 2011, 28(3): 185-191. Bai Jiangbo, Xiong Junjiang, Li Xueqin, et al. Research on processing technology of integral composite wing[J]. Acta Materiae Compositae Sinica, 2011, 28(3): 185-191.
[9]
Wan Z Q, Yan C, Liu D G, et al. Aeroelastic analysis and optimization of high-aspect-ratio composite forward-swept wings[J]. Chinese Journal of Aeronautics, 2005, 18(4): 317-325.
[10]
万志强, 杨超. 大展弦比复合材料机翼气动弹性优化[J]. 复合材料学报, 2005, 22(3): 145-149. Wan Zhiqiang, Yang Chao. Aeroelastic optimization of a high-aspect-ratio composite wing[J]. Acta Materiae Compositae Sinica, 2005, 22(3): 145-149.
[11]
Guo S J. Aeroelastic optimization of an aerobatic aircraft wing structure[J]. Aerospace Science and Technology, 2007, 11(5): 396-404.
[12]
Kameyama M, Fukunaga H. Optimum design of composite plate wings for aeroelastic characteristics using lamination parameters[J]. Computers & Structures, 2007, 85(3-4): 213-224.
[13]
Seresta O, Gürdal Z, Adams D B, et al. Optimal design of composite wing structures with blended laminates[J]. Composites: Part B, 2007, 38(4): 469-480.
[14]
程文渊, 常艳, 崔德刚, 等. 基于分布式计算的复合材料机翼优化设计[J]. 复合材料学报, 2007, 24(1): 167-171. Cheng Wenyuan, Chang Yan, Cui Degang, et al. Composite wing optimization design based on distributed computing[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 167-171.
[15]
Hansen L U, Horst P. Multilevel optimization in aircraft structural design evaluation[J]. Computers & Structures, 2008, 86(1-2): 104-118.
[16]
Kim T, Lim J, Shin S, et al. Structural design optimization of a tiltrotor aircraft composite wing to enhance whirl flutter stability[J]. Composite Structures, 2013, 95: 283-294.
[17]
Yin H L, Yu X Q. Integration of manufacturing cost into structural optimization of composite wings[J]. Chinese Journal of Aeronautics, 2010, 23(6): 670-676.
[18]
Zhao Q, Ding Y, Jin H. A layout optimization method of composite wing structures based on carrying efficiency criterion[J]. Chinese Journal of Aeronautics, 2011, 24(4): 425-433.
[19]
Liu D, Toropov V V. A lamination parameter-based strategy for solving an integer-continuous problem arising in composite optimization[J]. Computers & Structures, 2013, 128: 170-174.
[20]
An W, Chen D, Jin P. A single-level composite structure optimization method based on a blending tapered model[J]. Chinese Journal of Aeronautics, 2013, 26(4): 943-947.
[21]
邓聚龙. 灰色系统基本方法[M]. 武汉: 华中科技大学出版社, 2005: 35-75. Deng Julong. The primary methods of grey system theory[M]. Wuhan: Huazhong University of Science & Technology Co., Ltd., 2005: 35-75.
[22]
游思明, 熊峻江, 晏青, 等. 飞行器气动-隐身综合性能评估的灰关联度分析模型[J]. 航空学报, 2010, 31(7): 1338-1350. You Siming, Xiong Junjiang, Yan Qing, et al. Novel grey model to evaluate aerodynamic and stealth combination property[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7): 1338-1350.
[23]
汪文君, 熊峻江, 罗楚养. 飞行器系统效能评估的改进模糊方法研究[J]. 航空计算技术, 2011, 41(4): 8-12. Wang Wenjun, Xiong Junjiang, Luo Chuyang. System effectiveness rating for aircraft based on grey correlation degree methodology and fuzzy approach[J]. Aeronautical Computing Technique, 2011, 41(4): 8-12.