全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

纳米石墨烯复合材料的制备及应用研究进展

, PP. 263-272

Keywords: 石墨烯,制备方法,纳米石墨烯/聚合物复合材料,纳米无机/石墨烯复合材料,制备及应用

Full-Text   Cite this paper   Add to My Lib

Abstract:

石墨烯作为一种由单原子紧密堆积成的二维蜂窝状晶格结构碳材料,具有许多特殊的物理化学性质,使其在各个领域均表现出良好的应用前景。目前石墨烯及纳米石墨烯复合材料的制备和应用已成为材料界研究的重点和热点。在简要介绍石墨烯的结构和性质的基础上,介绍了石墨烯的4种制备方法——机械剥离法、化学气相沉积法、化学剥离法和化学合成法。总结了纳米石墨烯/聚合物复合材料以及纳米无机/石墨烯复合材料的制备及应用,并重点讨论了纳米石墨烯复合材料在生物医药、电子器件、微波吸收、传感器以及电极材料等方面独特的应用优势,展望了纳米石墨烯复合材料的发展前景及研究方向。

References

[1]  Cheng J L, Xin H L, Zheng H M, et al. One-pot synthesis of carbon coated-SnO2/graphene-sheet nanocomposite with highly reversible lithium storage capability[J]. Journal of Power Sources, 2013, 232: 152-158.
[2]  Yan J, Fan Z, Wei T, et al. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes[J]. Carbon, 2010, 48(13): 3825-3833.
[3]  Yan J, Wei T, Qiao W, et al. Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for super-capacitors[J]. Electrochimica Acta, 2010, 55(23): 6973-6978.
[4]  Zhu S M, Guo J J, Dong J P, et al. Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors[J]. Ultrasonics Sonochemistry, 2013, 20(3), 872-880.
[5]  Shi W H, Zhu J X, Sim D H, et al. Achieving high specific charge capacitances in Fe3O4/ reduced graphene oxide nanocomposites[J]. Journal of Materials Chemistry, 2011, 21(10): 3422-3427.
[6]  He F, Lam K, Ma D, et al. Fabrication of graphene nanosheet (GNS)-Fe3O4 hybrids and GNS-Fe3O4/syndiotactic polystyrene composites with high dielectric permittivity[J]. Carbon, 2013, 58: 175-184.
[7]  Bajpai R, Roy S, Koratkar N, et al. NiO nanoparticles deposited on graphene platelets as a cost-effective counter electrode in a dye sensitized solar cell[J]. Carbon, 2013, 56: 56-63.
[8]  Wu S X, Yin Z Y, He Q Y, et al. Electrochemical deposition of Cl-doped n-type Cu2O on reduced graphene oxide electrodes[J]. Journal of Materials Chemistry, 2011, 21(10): 3467-3470.
[9]  Kim F, Luo J, Cruz-Silva R, et al. Self-propagating domino-like reactions in oxidized graphite[J]. Advanced Functional Materials, 2010, 20(17): 2867-2873.
[10]  Yan S C, Shi Y, Zhao B, et al. Hydrothermal synthesis of CdS/functionalized graphene sheets nanocomposites[J]. Journal of Alloys and Compounds, 2013, 570: 65-69.
[11]  Ghosh T, Ullah K, Nikam V, et al. The characteristic study and sonocatalytic performance of CdSe-graphene as catalyst in the degradation of azo dyes in aqueous solution under dark conditions[J]. Ultrasonics Sonochemistry, 2013, 20(2): 768-776.
[12]  Das S, Sudhagar P, Nagarajan S, et al. Synthesis of graphene-CoS electro-catalytic electrodes for dye sensitized solar cells[J]. Carbon, 2012, 50(13): 4815-4821.
[13]  Huang G C, Chen T, Wang Z, et al. Synthesis and electrochemical performances of cobalt sulfides/graphene nanocomposite as anode material of Li-ion battery[J]. Journal of Power Sources, 2013, 235: 122-128.
[14]  Wang M Y, Huang J R, Tong Z W, et al. Reduced graphene oxide-cuprous oxide composite via facial deposition for photocatalytic dye-degradation[J]. Journal of Alloys and Compounds, 2013, 568: 26-35.
[15]  张树鹏, 宋海鸥. 氧化石墨烯/β-环糊精超分子杂化体的制备及表征[J]. 无机材料学报, 2012, 27(6): 596-602. Zhang Shupeng, Song Haiou. Preparation and characterization of graphene oxide/β-cyclodextrin supramo-lecular hybrid material[J]. Journal of Inorganic Materials, 2012, 27(6): 596-602.
[16]  Li D, Kaner R B. Graphene-based materials[J]. Nat Nanotechnol, 2008, 3: 101.
[17]  Verdejo R, Bernal M M, Romasanta L J, et al. Graphene filled polymer nanocomposites[J]. Journal of Materials Chemistry, 2011, 21(10): 3301-3310.
[18]  吕 晴, 于 杰, 秦 军, 等. 改性石墨烯的制备及对石墨烯/HDPE非等温结晶动力学的影响[J].复合材料学报, 2011, 28(4): 70-76. Lv Qing, Yu Jie, Qin Jun, et al. Preparation of modified graphene and its effect on non-isothermal crystallization kinetics of MGN/HDPE[J]. Acta Materiae Compositae Sinica, 2011, 28(4): 70-76.
[19]  Babel S, Kurniawan T A. Low-cost adsorbents for heavy metals uptake from contaminated water: a review[J]. Journal of Hazardous Materials, 2003, 97(1): 219-243.
[20]  Ngah W S, Ab Ghani S, Kamari A. Adsorption behaviour of Fe (II) and Fe (III) ions in aqueous solution on chitosan and cross-linked chitosan beads[J]. Bioresource Technology, 2005, 96(4), 443-450.
[21]  He Y Q, Zhang N N, Wang X D.Adsorption of graphene oxide/chitosan porous materials for metal ions[J]. Chinese Chemical Letters, 2011, 22(7): 859-862.
[22]  Yan D X, Ren P G, Pang H, et al. Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite[J]. Journal of Materials Chemistry, 2012, 22(36): 18772-18774.
[23]  Zhang H B, Yan Q, Zheng W G, et al. Tough graphene-polymer microcellular foams for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2011, 3(3): 918-924.
[24]  袁冰清, 郁黎明, 盛雷梅, 等. 石墨烯/聚苯胺复合材料的电磁屏蔽性能[J]. 复合材料学报, 2013, 30(1): 22-26. Yuan Bingqing, Yu Liming, Sheng Leimei, et al. Graphene sheets/polyaniline composite for electromagnetic interference shielding[J]. Acta Materiae Compositae Sinica, 2013, 30(1): 22-26.
[25]  Zhou K F, Zhu Y H, Yang X, et al. A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites[J]. Electrochimica Acta, 2010, 55(9): 3055-3060.
[26]  刘建华, 张施露, 于 美, 等. 石墨烯接枝聚吡咯复合物的原位合成及其电容特性研究[J]. 无机材料学报, 2013, 28(4): 403-408. Liu Jianhua, Zhang Shilu, Yu Mei, et al. Synthesis and capacitance characteristics of the graphene grafted polypyrrole composites[J]. Journal of Inorganic Materials, 2013, 28(4): 403-408.
[27]  Zhou X F, Wang F, Zhu Y M, et al. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries[J]. Journal of Materials Chemistry, 2011, 21(10): 3353-3358.
[28]  Li Z P, Wang J Q, Liu X H, et al. Electrostatic layer-by-layer self-assembly multilayer films based on graphene and manganese dioxide sheets as novel electrode materials for supercapacitors[J]. Journal of Materials Chemistry, 2011, 21(10): 3397-3403.
[29]  Ataca C, Aktürk E, Ciraci S. Hydrogen storage of calcium atoms adsorbed on graphene: First-principles plane wave calculations[J]. Physical Review B, 2009, 79(4): 41406-41411.
[30]  Du A, Zhu Z, Smith S C. Multifunctional porous graphene for nanoelectronics and hydrogen storage: new properties revealed by first principle calculations[J]. Journal of the American Chemical Society, 2010, 132(9): 2876-2877.
[31]  Liang M H, Luo B, Zhi L J. Application of graphene and graphene-based materials in clean energy-related devices[J]. International Journal of Energy Research, 2009, 33(13): 1161-1170.
[32]  de Arco L G, Zhang Y, Schlenker C W, et al. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics[J]. ACS Nano, 2010, 4(5): 2865-2873.
[33]  Tang B, Hu G, Gao H, et al. Three-dimensional graphene network assisted high performance dye sensitized solar cells[J]. Journal of Power Sources, 2013, 234: 60-68.
[34]  Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[35]  Zhang Y B, Tang T T, Girit C, et al. Direct observation of a widely tunable bandgap in bilayer grapheme[J]. Nature, 2009, 459(7248): 820-823.
[36]  Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets[J]. Nature, 2007, 446(7131): 60-63.
[37]  Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2010, 457(7230): 706-710.
[38]  Xia F, Mueller T, Lin Y, et al. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 2009, 4(12): 839-843.
[39]  Kuila T, Bose S, Mishra A K, et al. Chemical functionaliza-tion of graphene and its applications[J]. Progress Materials Science, 2012, 57(7): 1061-1105.
[40]  Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer grapheme[J]. Science, 2008, 321(5887): 385-388.
[41]  Balandin A A, Chosh S, Bao W Z, et al. Superior thermal conductivity of single-layer grapheme[J].Nano Letters, 2008, 8(3): 902-907.
[42]  Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature, 2007, 448(7152): 457-460.
[43]  Lv R, Terrones M. Towards new graphene materials: doped graphene sheets and nanoribbons[J]. Materials Letters, 2012, 78: 209-218.
[44]  Huang X, Qi X, Boey F, et al. Graphene-based composites[J]. Chemical Society Reviews, 2012, 41(2): 666-686.
[45]  Wei D Y, Yu J G, Huang H, et al. A simple quenching method for preparing graphenes[J]. Materials Letters, 2012, 66(1): 150-152.
[46]  ?rut I, Vesna Mik?ic Trontl V, Pervan P, et al. Temperature dependence of graphene growth on a stepped iridium surface[J]. Carbon, 2013, 56:193-200.
[47]  Strupinski W, Grodecki K, Wysmolek A, et al. Graphene epitaxy by chemical vapor deposition on SiC[J]. Nano Letters, 2011, 11(4): 1786-1791.
[48]  Losurdo M, Giangregorio M M, Capezzuto P, et al. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure[J]. Physical Chemistry Chemical Physics, 2011, 13(46): 20836-20843.
[49]  del Campo V, Henríquez R, Hberle P. Effects of surface impurities on epitaxial graphene growth[J]. Applied Surface Science, 2013, 264: 727-731.
[50]  Jin Y H, Jia M Q, Zhang M, et al. Preparation of stable aqueous dispersion of graphene nanosheets and their electrochemical capacitive properties[J]. Applied Surface Science, 2013, 264: 787-793.
[51]  Liu C Q, Hu G X, Gao H Y. Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N, N -dimethylformamide[J]. The Journal of Supercritical Fluids, 2012, 63: 99-104.
[52]  Li Q, Wang L, Zhu Y, et al. Solvothermal synthesis of graphene sheets at 300℃[J]. Materials Letters, 2011, 65(15): 2410-2412.
[53]  Zhang H B, Zheng W G, Yan Q, et al. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding[J]. Polymer, 2010, 51(5): 1191-1196.
[54]  狄莹莹, 任鹏刚, 张 倩. 石墨烯-多壁碳纳米管/超高分子量聚乙烯导电复合材料的制备及性能[J]. 复合材料学报, 2012, 29(4): 36-41. Di Yingying, Ren Penggang, Zhang Qian. Segregated ultrahigh molecular weight polyethylene composites filled with graphene sheets and hybrid multi-walled carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2012, 29(4): 36-41.
[55]  樊 玮, 张 超, 刘天西. 石墨烯/聚合物复合材料的研究进展[J]. 复合材料学报, 2013, 30(1): 14-21. Fan Wei, Zhang Chao, Liu Tianxi. Rencent progress in graphene/polymer composites[J]. Acta Materiae Compositae Sinica, 2013, 30(1): 14-21.
[56]  Lin Q L, Qu L J, Lü Q F, et al. Preparation and properties of graphene oxide nanosheets/cyanate ester resin composites[J]. Polymer Testing, 2013, 32(2): 330-337.
[57]  Li Y L, Kuan C F, Chen C H, et al. Preparation, thermal stability and electrical properties of PMMA/functionalized graphene oxide nanosheets composites[J]. Materials Chemistry and Physics, 2012, 134(2): 677-685.
[58]  Monti M, Rallini M, Puglia D, et al. Morphology and electrical properties of graphene-epoxy nanocomposites obtained by different solvent assisted processing methods[J]. Composites Part A: Applied Science and Manufacturing, 2013, 46: 166-172.
[59]  Ma W S, Li J, Zhao X S. Improving the thermal and mechanical properties of silicone polymer by incorporating functionalized graphene oxide[J]. Journal of Materials Science, 2013, 48(15): 5287-5294.
[60]  任鹏刚. 石墨烯及石墨烯基复合材料研究进展[J]. 中国印刷与包装研究, 2012, 4(3): 1-9. Ren Penggang. Research progress of graphene and graphene-based nanocomposites[J]. China Printing and Packaging Study, 2012, 4(3): 1-9.
[61]  Hu H, Wang X, Wang J, et al. Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization[J]. Chemical Physics Letters, 2010, 484(4): 247-253.
[62]  Rafiee M A, Rafiee J, Srivastava I, et al. Fracture and fatigue in graphene nanocomposites[J]. Small, 2010, 6(2): 179-183.
[63]  Li Y Q, Pan D Y, Chen S B, et al. In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites[J]. Materials & Design, 2013, 47: 850-856.
[64]  Wang J, Xu Y, Zhu J, et al. Electrochemical in situ polymerization of reduced graphene oxide/polypyrrole composite with high power density[J]. Journal of Power Sources, 2012, 208: 138-143.
[65]  Wang D, Zhang X, Zha J W, et al. Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold[J]. Polymer, 2013, 54(7): 1916-1922.
[66]  Balogh G, Hajba S, Karger-Kocsis J, et al. Preparation and characterization of in situ polymerrized cyclic butylene terephthalate/graphene nanocomposites[J]. Journal of Materials Science, 2013, 48(6): 2530-2535.
[67]  Xu C, Wang X, Zhu J. Graphene-metal particle nanocomposites[J]. The Journal of Physical Chemistry C, 2008, 112(50): 19841-19845.
[68]  柏 嵩, 沈小平. 石墨烯基无机纳米复合材料[J]. 化学进展, 2010, 22(11): 2106-2118. Bai Song, Shen Xiaoping. Graphene-based inorganic nano-composites[J]. Progress in Chemistry, 2010, 22(11): 2106-2118.
[69]  Nethravathi C, Rajamathi J T, Ravishankar N, et al. Graphite oxide-intercalated anionic clay and its decomposition to graphene-inorganic material nanocomposites[J]. Langmuir, 2008, 24(15): 8240-8244.
[70]  Yu S H, Zhao G C. Preparation of platinum nanoparticles-graphene modified electrode and selective determination of rutin[J]. International Journal of Electrochemistry, 2011, 2012: 1-6.
[71]  Zhou H, Qiu C, Liu Z, et al. Thickness-dependent morphologies of gold on N-layer graphenes[J]. Journal of the American Chemical Society, 2009, 132(3): 944-946.
[72]  Lu W, Luo Y, Chang G, et al. Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection[J]. Biosensors & Bioelectronics, 2011, 26(12): 4791-4797.
[73]  Ma J, Zhang J, Xiong Z, et al. Preparation, characterization and antibacterial properties of silver-modified graphene oxide[J]. Journal of Materials Chemistry, 2011, 21(10): 3350-3352.
[74]  Qian W, Cottingham S, Jiao J. Hybridization of conductive few-layer graphene with well-dispersed Pd nanocrystals[J]. Applied Surface Science, 2013, 275: 342-346.
[75]  Kuang D, Xu L, Liu L, et al. Graphene-nickel composites[J]. Applied Surface Science, 2013, 273: 484-490.
[76]  Jagannadham K. Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets[J]. Metallurgical and Materials Transactions B, 2012, 43(2): 316-324.
[77]  Marquardt D, Vollmer C, Thomann R, et al. The use of microwave irradiation for the easy synthesis of graphene-supported transition metal nanoparticles in ionic liquids[J]. Carbon, 2011, 49(4): 1326-1332.
[78]  Zhang D F, Pu X P, Ding G Q, et al. Two-phase hydrothermal synthesis of TiO2-graphene hybrids with improved photocatalytic activity[J]. Journal of Alloys and Compounds, 2013, 572: 199-204.
[79]  Shen J, Yan B, Shi M, et al. One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets[J]. Journal of Materials Chemistry, 2011, 21(10): 3415-3421.
[80]  Du G X, Wang X X, Zhang L D, et al. Controllable synthesis of different ZnO architectures decorated reduced graphene oxide nanocomposites[J]. Materials Letters, 2013, 96: 128-130.
[81]  Ahmad M, Ahmed E, Hong Z L, et al. A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light[J]. Applied Surface Science, 2013, 274: 273-281.
[82]  Li B J, Cao H Q. ZnO@ graphene composite with enhanced performance for the removal of dye from water[J]. Journal of Materials Chemistry, 2011, 21(10): 3346-3349.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133