全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Coupling Schemes in Terahertz Planar Metamaterials

DOI: 10.1155/2012/148985

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present a review of the different coupling schemes in a planar array of terahertz metamaterials. The gap-to-gap near-field capacitive coupling between split-ring resonators in a unit cell leads to either blue shift or red shift of the fundamental inductive-capacitive (LC) resonance, depending on the position of the split gap. The inductive coupling is enhanced by decreasing the inter resonator distance resulting in strong blue shifts of the LC resonance. We observe the LC resonance tuning only when the split-ring resonators are in close proximity of each other; otherwise, they appear to be uncoupled. Conversely, the higher-order resonances are sensitive to the smallest change in the inter particle distance or split-ring resonator orientation and undergo tremendous resonance line reshaping giving rise to a sharp subradiant resonance mode which produces hot spots useful for sensing applications. Most of the coupling schemes in a metamaterial are based on a near-field effect, though there also exists a mechanism to couple the resonators through the excitation of lowest-order lattice mode which facilitates the long-range radiative or diffractive coupling in the split-ring resonator plane leading to resonance line narrowing of the fundamental as well as the higher order resonance modes. 1. Introduction The interaction of electromagnetic waves with unstructured bulk matter is mainly governed by the inherent chemistry of material, and its properties are usually described in terms of permittivity and permeability. Recently developed electromagnetic metamaterials allow engineered material at the unit cell level, which has enabled novel methods to manipulate the electromagnetic properties [1]. Metamaterials have attracted a tremendous amount of interest because of their exotic properties such as negative refractive index [2], perfect focusing [3], cloaking [4, 5], and resonance modulation in the active and passive modes [6–29]. The electromagnetic responses offered by metamaterials are unique and are not found in naturally occurring materials. The fundamental building blocks of metamaterials are mainly comprised of a metallic split-ring resonators (SRRs) fabricated on a dielectric/semiconducting substrate. The operation of most metamaterial devices depends on the designs employed to control the fundamental resonances of SRRs, since the major tuning of material permittivity and permeability is enabled by these resonances [6–29]. Apart from the single-SRR approach, several research groups have explored lateral coupling between nearest neighbor SRRs and its

References

[1]  J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075–2084, 1999.
[2]  R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, no. 5514, pp. 77–79, 2001.
[3]  N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science, vol. 308, no. 5721, pp. 534–537, 2005.
[4]  J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science, vol. 312, no. 5781, pp. 1780–1782, 2006.
[5]  D. Schurig, J. J. Mock, B. J. Justice et al., “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977–980, 2006.
[6]  W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Physical Review Letters, vol. 96, no. 10, Article ID 107401, pp. 1–4, 2006.
[7]  H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature, vol. 444, no. 7119, pp. 597–600, 2006.
[8]  H. T. Chen, J. F. O'Hara, A. K. Azad et al., “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics, vol. 2, no. 5, pp. 295–298, 2008.
[9]  H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Physical Review Letters, vol. 103, no. 14, Article ID 147401, 2009.
[10]  Z. Tian, R. Singh, J. Han et al., “Terahertz superconducting plasmonic hole array,” Optics Letters, vol. 35, no. 21, pp. 3586–3588, 2010.
[11]  T. Driscoll, H. T. Kim, B. G. Chae et al., “Memory metamaterials,” Science, vol. 325, no. 5947, pp. 1518–1521, 2009.
[12]  R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Optics Express, vol. 18, no. 13, pp. 13425–13430, 2010.
[13]  J. Gu, R. Singh, Z. Tian et al., “Terahertz superconductor metamaterial,” Applied Physics Letters, vol. 97, no. 7, Article ID 071102, 2010.
[14]  B. Jin, C. Zhang, S. Engelbrecht et al., “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Optics Express, vol. 18, no. 16, pp. 17504–17509, 2010.
[15]  H. T. Chen, H. Yang, R. Singh et al., “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Physical Review Letters, vol. 105, no. 24, Article ID 247402, 2010.
[16]  R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. -T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Optics Letters, vol. 36, no. 7, pp. 1230–1232, 2011.
[17]  R. Singh, J. Xiong, A. K. Azad, et al., “Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials,” Nanophotonics. In press, http://arxiv.org/abs/1111.3917.
[18]  S. Y. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Applied Physics Letters, vol. 97, no. 19, Article ID 191906, 2010.
[19]  N.-H. Shen, M. Massaouti, M. Gokkavas et al., “Optically implemented broadband blueshift switch in the terahertz regime,” Physical Review Letters, vol. 106, no. 3, Article ID 037403, 2011.
[20]  D. Roy Chowdhury, R. Singh, J. F. O'Hara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Applied Physics Letters, vol. 99, no. 23, Article ID 231101, 2011.
[21]  J. Gu, R. Singh, A. K. Azad, et al., “An active hybrid plasmonic metamaterial,” Optical Materials Express, vol. 2, Article ID 1617, 2011, http://www.opticsinfobase.org/ome/abstract.cfm?uri=ome-2-1-31.
[22]  H.-T. Chen, J. F. O'Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser & Photonics Reviews, vol. 5, no. 4, pp. 513–533, 2011.
[23]  R. Singh, A. K. Azad, J. F. O'Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Optics Letters, vol. 33, no. 13, pp. 1506–1508, 2008.
[24]  D. R. Chowdhury, R. Singh, M. Reiten et al., “A broadband planar terahertz metamaterial with nested structure,” Optics Express, vol. 19, no. 17, pp. 15817–15823, 2011.
[25]  J. F. O'Hara, R. Singh, I. Brener et al., “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Optics Express, vol. 16, no. 3, pp. 1786–1795, 2008.
[26]  I. A.I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Applied Physics Letters, vol. 93, no. 8, Article ID 083507, 2008.
[27]  R. Singh, E. Smirnova, A. J. Taylor, J. F. O'Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Optics Express, vol. 16, no. 9, pp. 6537–6543, 2008.
[28]  W. Withayachumnankul and D. Abbott, “Metamaterials in the Terahertz Regime,” IEEE Photonics Journal, vol. 1, p. 99, 2009, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5130235.
[29]  D. R. Chowdhury, R. Singh, M. Reiten, J. Zhou, A. J. Taylor, and J. F. O'Hara, “Tailored resonator coupling for modifying the terahertz metamaterial response,” Optics Express, vol. 19, no. 11, pp. 10679–10685, 2011.
[30]  F. Hesmer, E. Tatartschuk, O. Zhuromskyy et al., “Coupling mechanisms for split ring resonators: theory and experiment,” Physica Status Solidi B, vol. 244, no. 4, pp. 1170–1175, 2007.
[31]  R. S. Penciu, K. Aydin, M. Kafesaki et al., “Multi-gap individual and coupled split-ring resonator structures,” Optics Express, vol. 16, no. 22, pp. 18131–18144, 2008.
[32]  I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Physical Review Letters, vol. 103, no. 21, Article ID 213902, 2009.
[33]  R. Singh, I. A.I. Al-Naib, Y. Yang et al., “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Applied Physics Letters, vol. 99, no. 20, Article ID 201107, 2011.
[34]  N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Advanced Materials, vol. 20, no. 23, pp. 4521–4525, 2008.
[35]  R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Physical Review B, vol. 79, no. 8, Article ID 085111, 2009.
[36]  N. Feth, M. K?nig, M. Husnik et al., “Electromagnetic interaction of split-ring resonators: the role of separation and relative orientation,” Optics Express, vol. 18, no. 7, pp. 6545–6554, 2010.
[37]  R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “The impact of nearest neighbor interaction on the resonances in terahertz metamaterials,” Applied Physics Letters, vol. 94, no. 2, Article ID 021116, 2009.
[38]  A. Bitzer, J. Wallauer, H. Helm, H. Merbold, T. Feurer, and M. Walther, “Lattice modes mediate radiative coupling in metamaterial arrays,” Optics Express, vol. 17, no. 24, pp. 22108–22113, 2009.
[39]  R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Applied Physics Letters, vol. 97, no. 24, Article ID 241108, 2010.
[40]  J. Wallauer, A. Bitzer, S. Waselikowski, and M. Walther, “Near-field signature of electromagnetic coupling in metamaterial arrays: a terahertz microscopy study,” Optics Express, vol. 19, no. 18, pp. 17283–17292, 2011.
[41]  D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field interaction,” Physical Review B, vol. 82, no. 15, Article ID 155128, 2010.
[42]  R. Singh, I. A.I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Optics Express, vol. 19, no. 7, pp. 6312–6319, 2011.
[43]  D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” Journal of the Optical Society of America B, vol. 7, p. 2006, 1990, http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-7-10-2006.
[44]  Computer Simulation Technology (CST), Darmstadt, Germany.
[45]  V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Physical Review Letters, vol. 101, no. 8, Article ID 087403, 2008.
[46]  C. Rockstuhl, T. Zentgraf, C. Etrich, J. Kuhl, F. Lederer, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Optics Express, vol. 14, no. 19, pp. 8827–8836, 2006.
[47]  L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” Journal of the Optical Society of America A, vol. 14, no. 10, pp. 2758–2767, 1997.
[48]  N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Physical Review B, vol. 80, no. 4, Article ID 041102, 2009.
[49]  C. Helgert, C. Rockstuhl, C. Etrich et al., “Effective properties of amorphous metamaterials,” Physical Review B, vol. 79, Article ID 233107, 4 pages, 2009.
[50]  R. Singh, X. Lu, J. Gu, Z. Tian, and W. Zhang, “Random terahertz metamaterials,” Journal of Optics A, vol. 12, no. 1, Article ID 015101, 2010.
[51]  G. Acuna, S. F. Heucke, F. Kuchler, H. T. Chen, A. J. Taylor, and R. Kersting, “Surface plasmons in terahertz metamaterials,” Optics Express, vol. 16, no. 23, pp. 18745–18751, 2008.
[52]  A. K. Azad, J. Dai, and W. Zhang, “Transmission properties of terahertz pulses through subwavelength double split-ring resonators,” Optics Letters, vol. 31, no. 5, pp. 634–636, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413