全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

川北元坝气田二叠系长兴组白云岩稀土元素地球化学特征及其指示意义

DOI: 10.7605/gdlxb.2015.03.26, PP. 309-320

Keywords: 稀土元素,白云岩,TSR作用,四川盆地,元坝气田,二叠系

Full-Text   Cite this paper   Add to My Lib

Abstract:

川北元坝气田二叠系长兴组49个碳酸盐岩样品的稀土元素(REE)和钇(Y)含量的测试结果表明:稀土元素总量(ΣREE)普遍较低(平均1.50×10-6),说明岩石样品几乎无陆源碎屑的混入,且未受到深部热液的影响。页岩标准化后的白云岩REE特征表现为轻稀土(LREE)亏损、正La异常、负Ce异常(0.49~1.08,平均0.75)、普遍的正Eu异常(0.89~46.00,平均4.68)及较高的Y/Ho值(28.82~63.47,平均43.04),总体表现出与海水的REE配分特征类似,表明白云化流体为还原性的海源流体,白云岩形成环境为埋藏环境。元坝气田长兴组构造平缓,白云岩横向上连续分布,碳酸盐岩δ18O(-7.07‰~-2.92‰,平均-4.95‰)相对较重,岩心与岩石薄片未观察到角砾状或条带状的热液白云岩典型构造,均说明元坝气田长兴组未受到深部热液流体的影响,白云岩较高的正Eu异常与深部热液流体无关;电子扫描显微镜下观察到大量的热化学硫酸盐还原反应(TSR)的产物单质硫和富硫沥青,表明元坝气田长兴组基质白云岩形成之后的TSR作用导致了地层水极度还原的环境,从而造成了白云岩较高程度的正Eu异常,反过来说明了TSR作用对白云岩储集层具有一定的改造作用。

References

[1]  蔡春芳,蔡镠璐,张俊,等. 2012. 川东北飞仙关组甲烷为主的TSR及其同位素分馏作用[J]. 岩石学报,28(3):889-894.
[2]  陈德潜,陈刚. 1990. 实用REE地球化学[M]. 北京:冶金工业出版社,20-22.
[3]  陈轩,赵文智,张利萍,等. 2012. 川中地区中二叠统构造热液白云岩的发现及其勘探意义[J]. 石油学报,33(4):562-569.
[4]  戴建全. 2010. 川东北元坝地区长兴组—飞仙关组气藏勘探潜力评价[J]. 成都理工大学学报(自然科学版),37(4):419-423.
[5]  段金宝,李平平,陈丹,等. 2013. 元坝气田长兴组礁滩相岩性气藏形成与演化[J]. 岩性油气藏,25(3):43-47.
[6]  韩银学,李忠,韩登林,等. 2009. 塔里木盆地塔北东部下奥陶统基质白云岩的稀土元素特征及其成因[J]. 岩石学报,25(10):2405-2416.
[7]  黄思静,佟宏鹏,刘红丽,等. 2009. 川东北飞仙关组白云岩的主要类型、地球化学特征和白云化机制[J]. 岩石学报,25(10):2363-2372.
[8]  李国蓉,武恒志,叶斌,等. 2014. 元坝气田长兴组储层溶蚀作用期次与机制研究[J]. 岩石学报,30(3):709-717.
[9]  罗志立,雍自权,刘树根,等. 2004. “峨眉地裂运动”对扬子古板块和塔里木古板块的离散作用及其地学意义[J]. 新疆石油地质,25(1):1-7.
[10]  潘立银,刘占国,李昌,等. 2012. 四川盆地东部下三叠统飞仙关组白云岩化作用及其与储集层发育的关系[J]. 古地理学报,14(2):176-186.
[11]  强子同,曾德铭,王兴志,等. 2012. 川东北下三叠统飞仙关组鲕粒滩白云岩同位素地球化学特征[J]. 古地理学报,14(1):13-20.
[12]  宋光永,刘树根,黄文明,等. 2009. 川东南丁山—林滩场构造灯影组热液白云岩特征[J]. 成都理工大学学报(自然科学版),36(6):706-715.
[13]  田永净,马永生,刘波,等. 2014. 川东北元坝气田长兴组白云岩成因研究[J]. 岩石学报,30(9):2766-2776.
[14]  王一刚,刘划一,文应初,等. 2002. 川东北飞仙关组鲕滩储集层分布规律、勘探方法与远景预测[J]. 天然气工业,22(增刊):14-20.
[15]  魏国齐,杨威,张林,等. 2005. 川东北飞仙关组鲕滩储层白云石化成因模式[J]. 天然气地球科学,16(2):162-166.
[16]  雍自权,罗志立,刘树根,等. 2007. “塔里木—扬子古大陆”的重建对油气勘探的意义[J]. 石油学报,28(5):1-6.
[17]  郑荣才,胡忠贵,冯青平,等. 2007. 川东北地区长兴组白云岩储集层的成因研究[J]. 矿物岩石,27(4):78-84.
[18]  郑荣才,文华国,郑超,等. 2009. 川东北普光气田下三叠统飞仙关组白云岩成因:来自岩石结构与Sr同位素和Sr含量的证据[J]. 岩石学报,25(10):2459-2468.
[19]  张学丰,胡文瑄,张军涛,等. 2008. 塔里木盆地下奥陶统白云岩化流体来源的地球化学分析[J]. 地学前缘,15(2):80-89.
[20]  Barrat J,Boulegue J,Tiercelin J, et al. 2000. Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika,East Africa[J]. Geochimica et Cosmochimica Acta,64:287-298.
[21]  Bau M. 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J]. Chemical Geology,93:219-230.
[22]  Bau M,Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations,Transvaal Supergroup,South Africa[J]. Precambrian Research,79:37-55.
[23]  Banner J L,Hanson G N,Meyers W J. 1988. Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation(Mississippian):Implications for REE mobility during carbonate diagenesis[J]. Journal of Sedimentary Research,58:415-432.
[24]  Byrne R H,Kim K H. 1990. Rare earth element scavenging in seawater[J]. Geochimica et Cosmochimica Acta,54(10):2645-2656.
[25]  Chen D Z,Qing H R,Yang C. 2004. Multistage hydrothermal dolomites in the Middle Devonian(Givetian)carbonates from the Guilin area,South China[J]. Sedimentology,51:1029-1051.
[26]  Davies G R. 2004. Hydrothermal(thermobaric)dolomite and leached limestone reservoirs:General principles genetic connections,and economic significance in Canada[A]. In: Annual Meeting Expanded Abstracts[C]. AAPG Bulletin: 32.
[27]  Davies G R,Smith L B. 2006. Structurally controlled hydrothermal dolomite reservoir facies:An overview[J]. AAPG Bulletin,90(11):1641-1690.
[28]  De Baar H J W,Bacon M P,Brewer P G, et al. 1985. Rare earth elements in the Pacific and Atlantic Oceans[J]. Geochimica et Cosmochimica Acta,49(9):1943-1959.
[29]  Elderfield H,Greaves M J. 1982. The rare earth elements in seawater[J]. Nature,296:214-219.
[30]  Goldberg E D,Koide M,Schmitt R A, et al. 1963. Rare-Earth distributions in the marine environment[J]. Journal of Geophysical Research,68:4209-4217.
[31]  Goldstein S J,Jacobsen S B. 1988. Rare earth elements in river waters[J]. Earth and Planetary Science Letters,89:35-47.
[32]  Guichard F,Church T M,Treuil M, et al. 1979. Rare earths in barites:Distribution and effects on aqueous partitioning[J]. Geochimica et Cosmochimica Acta,43(7):983-997.
[33]  Han R S,Liu C Q,Emmanuel J M C, et al. 2012. REE geochemistry of altered tectonites in the Huize base-metal district,Yunnan,China[J]. Geochemistry:Exploration,Environment,Analysis, 12:127-146.
[34]  Hecht L,Freiberger R,Gilg H A, et al. 1999. Rare earth element and isotope(C,O,Sr)characteristics of hydrothermal carbonates:Genetic implications for dolomite-hosted talc mineralization at Gpfersgrün(Fichtelgebirge,Germany)[J]. Chemical Geology,155:115-130.
[35]  Jiang L,Cai C F,Worden R H, et al. 2013. Reflux dolomitization of the Upper Permian Changxing Formation and the Lower Triassic Feixianguan Formation,NE Sichuan Basin,China[J]. Geofluids,13:232-245.
[36]  Lai X D,Yang X Y,Sun W D. 2012. Geochemical constraints on genesis of dolomite marble in the Bayan Obo REE-Nb-Fe deposit,Inner Mongolia:Implications for REE mineralization[J]. Journal of Asian Earth Sciences,57:90-102.
[37]  Liu Y S,Zong K Q,Kelemen P B, et al. 2008. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole:Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology,247:133-153.
[38]  Lonnee J,Machel H G. 2006. Pervasive dolomitization with subsequent hydrothermal alteration in the Clarke Lake gas field,Middle Devonian Slave Point Formation,British Columbia,Canada[J]. AAPG Bulletin, 90(11):1739-1761.
[39]  MacRae N D,Nesbitt H W,Kronberg B I. 1992. Development of a positive Eu anomaly during diagenesis[J]. Earth and Planetary Science Letters,109:585-591.
[40]  McLennan S M. 1989. Rare earth elements in sedimentary rocks:Influence of provenance and sedimentary processes[J]. Mineralogical Society of America,21:169-200.
[41]  Michard A,Albarede F. 1986. The REE content of some hydrothermal fluids[J]. Chemical Geology,55:51-60.
[42]  Michard A,Albarede F,Michard G, et al. 1983. Rare-earth element and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field(13°N)[J]. Nature,303:795-797.
[43]  Morgan J W,Wandless G A. 1980. Rare earth elements distribution in some hydrothermal minerals:Evidence for crystallographic control[J]. Geochimica et Cosmochimica Acta,44(7):973-980.
[44]  Nothdurft L D,Webb G E,Kamber B S. 2004. Rare earth element geochemistry of Late Devonian reefal carbonates,Canning Basin,Western Australia:Confirmation of a seawater REE proxy in ancient limestones[J]. Geochimica et Cosmochimica Acta,68(2):263-283.
[45]  Olivier N,Boyet M. 2006. Rare earth and trace elements of microbialites in Upper Jurassic coral-and sponge-microbialite reefs[J]. Chemical Geology,230:105-123.
[46]  Owen R M,Olivarez A M. 1988. Geochemistry of rare earth elements in Pacific hydrothermal sediments[J]. Marine Chemistry,25:183-196.
[47]  Parsapoor A,Khalili M,Mackizadeh M A. 2009. The behaviour of trace and rare earth elements(REE)during hydrothermal alteration in the Rangan area(Central Iran)[J]. Journal of Asian Earth Sciences,34:123-134.
[48]  Piper D Z. 1974. Rare earth elements in the sedimentary cycle:A summary[J]. Chemical Geology,14(4):285-304.
[49]  Qing H R, Mountjoy E W. 1994. Rare earth element geochemistry of dolimites in the Middle Devonian Presquile barrier,Western Canada Sedimentary Basin:Implications for fluid-rock ratios during dolomitization[J]. Sedimentology,41(4):787-804.
[50]  Schieber J. 1988. Redistribution of rare-earth elements during diagenesis of carbonate rocks from the Mid-Proterozoic Newland Formation,Montana,U.S.A.[J]. Chemical Geology,69:111-126.
[51]  Shimizu H,Masuda A. 1977. Cerium in chert as an indicator of marine environment of its formation[J]. Nature,266:346-348.
[52]  Smith L B. 2006. Origin and reservoir characteristics of Upper Ordovician Trenton-Black River hydrothermal dolomite reservoirs in New York[J]. AAPG Bulletin,90(11):1691-1718.
[53]  Sverjensky D A. 1984. Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters,67(1):70-78.
[54]  Wang L C,Hu W X,Wang X L, et al. 2014. Seawater normalized REE patterns of dolomites in Geshan and Panlongdong sections,China:Implications for tracing dolomitization and diagenetic fluids[J]. Marine and Petroleum Geology,56:63-73.
[55]  Webb G E,Kamber B S. 2000. Rare earth elements in Holocene reefal microbialites:A new shallow seawater Proxy[J]. Geochimica et Cosmochimica Acta,64(9):1557-1565.
[56]  Zhao H W,Jones B. 2013. Distribution and interpretation of rare earth elements and yttrium in Cenozoic dolostones and limestones on Cayman Brac,British West Indies[J]. Sedimentary Geology,284-285:26-38.
[57]  Zhang X F,Hu W X,Zhang J T, et al. 2008. Geochemical analyses on dolomitizing fluids of Lower Ordovician carbonate reservoir in Tarim Basin[J]. Earth Science Frontiers,15(2):80-89.
[58]  Zhang J,Nozaki Y. 1996. Rare earth elements and yttrium in seawater:ICP-MS determinations in the East Caroline,Coral Sea,and South Fiji basins of the western South Pacific Ocean[J]. Geochimica et Cosmochimica Acta,60:4631-4644.
[59]  Zhang X F,Hu W X,Jin Z J, et al. 2008. REE compositions of Lower Ordovician dolomites in Central and North Tarim Basin,NW China:A potential REE proxy for ancient seawater[J]. Acta Geologica Sinica,82(3):610-621.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133