全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Novel Directional Nanoantennas for Single-Emitter Sources and Wireless Nano-Links

DOI: 10.1155/2012/348306

Full-Text   Cite this paper   Add to My Lib

Abstract:

Optical nanoantennas are emerging as one of the key components in the future nanophotonic and plasmonic circuits. The first optical nanoantennas were in a form of simple spherical nanoparticles. Recently more complex Yagi-Uda nanoantenna structures were demonstrated. These nanoantennas enhance radiation of single emitters and provide well-defined directional radiation. In this contribution, we present the novel design of the directional nanoantenna, which is excited from the propagating mode of the plasmonic waveguide. The nanoantenna design is based on the travelling wave principle, well known at RF/microwave frequencies. By properly designing the propagating parts of the nanoantenna, a very efficient coupling to free space wave impedance can be achieved. Furthermore, the control over the radiation direction and beam width is relatively easy with this nanoantenna. Compared to the previously published Yagi-Uda designs, the new nanoantenna presented in this work has directivity three times higher. 1. Introduction In the future we foresee the development of optical wireless communication networks at the nanoscale [1]. In this work we will focus on one specific problem in the development of the physical layer of such wireless networks-design of novel nanoantennas (often also referred to as optical antennas, or plasmonic antennas in the open literature). Nanoantennas are key components and enabling technology for the future wireless connectivity at the nanoscale, coupling light from external world to nanoscale circuits and vice versa. Nanoantennas have their origins in the field of physics and more precisely in near-field microscopy. Wessel in 1985 was the first to mention explicitly the analogy of local microscopic light sources to classical antennas [2]—a concept that has since been thoroughly explored. History of nanoantennas can be found in [3]. As one of the main applications for novel nanoantennas we envisage (a) on-chip and intrachip wireless Nano-links in future micro- and nanodevices and (b) single-emitter sources coupled to the directional nanoantenna. The coupling of the nanoantenna to single-emitter light sources has been investigated by several groups theoretically [4–7] as well as experimentally [8, 9]. Nanoantenna in this application is used mainly to direct and focus light. Due to the lack of true nanoscale light sources, the coupling of the emitter (e.g., quantum dot) to the nanoantenna has been achieved by proximity coupling (near-field coupling) which is rather inefficient. Ideally, one would like to connect the source and the

References

[1]  PhotonicsRoadmapSME (EU FP7 project), “Photonics in ICT: A Technology Roadmap for SMEs on new photonic devices, materials and fabrication technologies,” technology roadmap, http://www.photonicroad.eu/upload/PhotonicRoadSME_Technology%20Roadmap%20on%20Photonics%20in%20ICT.pdf.
[2]  J. Wessel, “Surface-enhanced optical microscopy,” Journal of the Optical Society of America B, vol. 2, pp. 1538–1540, 1985.
[3]  P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Advances in Optics and Photonics, vol. 1, pp. 438–483, 2009.
[4]  T. H. Taminiau, F. D. Stefani, and N. F. Van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes,” Nano Letters, vol. 11, no. 3, pp. 1020–1024, 2011.
[5]  B. Stout, A. Devilez, B. Rolly, and N. Bonod, “Multipole methods for nanoantennas design: applications to Yagi-Uda configurations,” Journal of the Optical Society of America B, vol. 28, no. 5, pp. 1213–1223, 2011.
[6]  K. C. Y. Huang, Y. C. Jun, M.-K. Seo, and M. L. Brongersma, “Power flow from a dipole emitter near an optical antenna,” Optics Express, vol. 19, no. 20, pp. 19084–19092, 2011.
[7]  V. Giannini, J. A. Sánchez-Gil, O. L. Muskens, and J. G. Rivas, “Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence,” Journal of the Optical Society of America B, vol. 26, no. 8, pp. 1569–1577, 2009.
[8]  A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. Van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science, vol. 329, no. 5994, pp. 930–933, 2010.
[9]  Y. Alaverdyan, N. Vamivakas, J. Barnes, C. Lebouteiller, J. Hare, and M. Atatüre, “Spectral tunability of a plasmonic antenna with a dielectric nanocrystal,” Optics Express, vol. 19, no. 19, pp. 18175–18181, 2011.
[10]  S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Advanced Materials, vol. 13, no. 19, pp. 1501–1505, 2001.
[11]  S. Maier, Plasmonics: Fundamentals and Applications, Springer, Berlin, Germany, 2007.
[12]  J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Letters, vol. 10, no. 9, pp. 3596–3603, 2010.
[13]  http://www.cst.com/.
[14]  P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Physical Review B, vol. 6, no. 12, pp. 4370–4379, 1972.
[15]  C. Balanis, Antenna Theory: Analysis and Design, John Wiley & Sons, New York, NY, USA, 2005.
[16]  T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nature Photonics, vol. 4, no. 5, pp. 312–315, 2010.
[17]  A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Physical Review Letters, vol. 104, no. 21, Article ID 213902, 2010.
[18]  T. H. Taminiau, F. D. Stefani, and N. F. Van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Optics Express, vol. 16, no. 14, pp. 10858–10866, 2008.
[19]  A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Physical Review Letters, vol. 101, no. 4, Article ID 043901, 2008.
[20]  J. J. Greffet, M. Laroche, and F. Marquier, “Impedance of a nanoantenna and a single quantum emitter,” Physical Review Letters, vol. 105, no. 11, Article ID 117701, 2010.
[21]  B. Ciftcioglu, R. Berman, J. Zhang et al., “A 3-D integrated intrachip free-space optical interconnect for many-core chips,” IEEE Photonics Technology Letters, vol. 23, no. 3, pp. 164–166, 2011.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133