全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

近景区域网平差的预处理共轭梯度稀疏解法

DOI: 10.6046/gtzyyg.2015.01.07, PP. 44-47

Keywords: 预处理,稀疏矩阵,预处理共轭梯度(PCG),空中三角测量,光束法平差,从运动到结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对大规模、近病态法的近景区域网平差法方程快速解算问题,提出基于预处理共轭梯度(preconditionedconjugategradient,PCG)法的稀疏解算方法。首先,通过选择与法方程系数矩阵对应的对角平方根矩阵作为预处理矩阵,以改变待估参数向量的坐标基,进而改善法方程系数矩阵性态,达到利用PCG提高收敛速度和解算精度的目的;然后,通过应用稀疏矩阵提高平差法方程系数矩阵的储存与求解效率。实验结果证明,该方法不影响摄影测量中区域网平差中多类、多尺度参数同时解算的收敛域,不但具有很高的解算精度,而且速度较快。

References

[1]  李祚林,李晓辉,马灵玲,等.面向无参考图像的清晰度评价方法研究[J].遥感技术与应用,2011,26(2):239-246. Li Z L,Li X H,Ma L L,et al.Research of definition assessment based on no-reference digital image quality[J].Remote Sensing Technology and Application,2011,26(2):239-246.
[2]  李亚鹏,何斌.采用MTF定量评估CCD错位成像的成像质量[J].红外与激光工程,2013,42(2):443-448. Li Y P,He B.Quantitative evaluation of image quality of CCD subpixel imaging using MTF[J].Infrared and Laser Engineering,2013,42(2):443-448.
[3]  Olsson C,Kahl F,Oskarsson M.Optimal estimation of perspective camera pose[J].International Conference on Pattern Recongnition,2006,2:5-8.
[4]  Greer P B,Van D T.Evaluation of an algorithm for the assessment of the MTF using an edge method[J].Medical Physics,2000,27(9):2048-2059.
[5]  Kahl F,Henrion D.Globally optimal estimates for geometric reconstruction problems[J].International Journal of Computer Vision,2007,74(1):3-15.
[6]  Pan Z X,Huang H J,Yu J,et al.Super-resolution method based on CS and structural self-similarity for remote sensing images[J].Signal Processing,2012,28(6):859-872.
[7]  朱肇光.摄影测量学[M].2版.北京:测绘出版社,1995. Zhu Z G.Photogrammetry[M].2nd ed.Beijing:Surveying and Mapping Press,1995.
[8]  徐振亮.轴角描述的车载序列街景影像空中三角测量与三维重建方法研究[D].武汉:武汉大学,2014. Xu Z L.Research on Aerial Triangulation Angle/Axis Representation and 3D Reconstruction for Vehicle-borne Street-level Image Sequence[D].Wuhan:Wuhan University,2014.
[9]  吴建平,王正华,李晓梅.稀疏线性方程组的高效求解与并行计算[M].长沙:湖南科学技术出版社,2004. Wu J P,Wang Z H,Li X M.Efficient Solving Sparse Linear Equations with Parallel Computing[M].Changsha:Hunan Science and Technology Press,2004.
[10]  Davis T.Direct Methods for Sparse Linear Systems[M].Philadelphia:SIAM,2006.
[11]  Dellaert F,Kaess M.Square root SAM:Simultaneous localization and mapping via square root information smoothing[J].International Journal of Robotics Research,2006,25(12):1181-1204.
[12]  Lourakis M,Argyros A.The Design and Implementation of a Generic Sparse Bundle Adjustment Software Package Based on the Levenberg Marquardt Algorithm[R].ICS/FORTH Technical Report,No340,2004.
[13]  Cornou S,Dhome M,Sayd P,et al.Bundle Adjustment:A Fast Method with Weak Initialisation[G].Cardiff:BMVC,2002:223-232.
[14]  Kotwal K,Chaudhuri S.A novel approach to quantitative evaluation of hyperspectral image fusion techniques[J].Information Fusion,2013,14(1):5-18.
[15]  Bartoli A.A unified framework for quasi-linear bundle adjustment[C]//Proceedings of the 16th International Conference on Pattern Recognition.Quebec City,Quebec,Canada:IEEE,2002,2:560-563.
[16]  冯其强,李广云,李宗春.基于点松弛法的自检校光束法平差快速计算[J].测绘科学技术学报,2008,25(4):300-302. Feng Q Q,Li G Y,Li Z C,et al.Speedy calculation of self calibration bundle adjustment in digital industrial photogrammetry[J].Journal of Geomatics Science and Technology,2008,25(4):300-302.
[17]  Wang Z,Bovik A C,Sheikh H R,et al.Image quality assessment:From error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133