全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

考虑谱形影响的地震动强度指标研究进展

DOI: 10.6052/j.issn.1000-4750.2014.07.ST06, PP. 9-9

Keywords: 基于性能地震工程,非线性地震反应,增量动力分析,地震动谱形,强度指标

Full-Text   Cite this paper   Add to My Lib

Abstract:

合理地选择与调整地震动记录是影响结构弹塑性时程分析结果可靠性的重要因素之一。该文首先选择15条地震动记录作为输入,以基本周期T1对应的谱加速度Sa(T1)作为地震动强度指标来调整原始地震动记录,对一榀六层三跨钢筋混凝土平面框架结构进行了增量动力分析,分析了结构线性和非线性地震响应指标如最大层间位移角与不同周期处谱加速度值的相关性。分析结果表明,不同周期处谱加速度值与结构地震响应的相关性不同,且相关程度与结构是否进入非线性和进入非线性的程度有关。这一结果表明,由于高阶振型的影响或进入非线性阶段的周期延长效应,仅按单一强度指标如Sa(T1)调整地震动记录对结构进行动力分析,所得结果的离散性必然较大。因此发展考虑地震动谱形特征的强度指标是进一步完善结构地震反应分析和抗震性能评估的基础。基于此,该文较为系统地对目前已提出的能够考虑谱形的地震动强度指标及其应用现状进行了综述总结,以期为我国开展合理的地震动记录选择与调整等研究提供一定的参考。

References

[1]  Ye Lieping, Ma Qianli, Miao Zhiwei. Study on earthquake intensities for seismic analysis of structures [J]. Earthquake Engineering and Engineering Vibration, 2009, 29(4): 9―22. (in Chinese)
[2]  韩建平, 周伟, 李慧. 基于汶川地震记录的地震动强度指标与中长周期SDOF体系最大响应相关性的研究[J]. 工程力学, 2011, 28(10): 185―196.
[3]  Han Jianping, Zhou Wei, Li Hui. Correlation between ground motion intensity indices and SDOF system responses with medium-to-long period based on the Wenchuan earthquake data [J]. Engineering Mechanics, 2011, 28(10): 185―196. (in Chinese)
[4]  Baker J W, Cornell C A. Spectral shape, epsilon and record selection [J]. Earthquake Engineering and Structural Dynamics, 2006, 35 (9): 1077―1095.
[5]  Baker J W, Cornell C A. Vector-valued intensity measures incorporating spectral shape for prediction of structural response [J]. Journal of Earthquake Engineering, 2008, 12(4): 534―554.
[6]  Shome N, Cornell C A. Probabilistic seismic demand analysis of nonlinear structures [R]. Stanford: Report No. RMS-35, RMS Program, Stanford University, 1999.
[7]  Haselton C B, Baker J W, Goulet C G, et al. The importance of considering spectral shape when evaluating building seismic performance under extreme ground motions [C]// Kona: Proceedings of 2008 Structural Engineers Association of California Convention. Kona, 2008: 10.
[8]  Cornell C A, Krawinkler H. Progress and challenges in seismic performance assessment [R]. Berkeley, CA: PEER Center News, 2000, 3(2): 1―3.
[9]  Deierlein G G. Overview of a comprehensive framework for earthquake performance assessment [C]// Bled, Slovenia: Proceedings of the International Workshop on Performance-Based Seismic Design-Concepts and Implementation, 2004: 15―26.
[10]  Moehle J P, Deierlein G G. A framework methodology for performance-based earthquake engineering [C]// Vancouver, Canada: Proceedings of 13th World Conference on Earthquake Engineering, 2004: 679.
[11]  王亚勇, 刘小第, 程民宪. 建筑结构时程分析法输入地震波的研究[J]. 建筑结构学报, 1991, 12(2): 51―60.
[12]  Wang Yayong, Liu Xiaodi, Cheng Minxian. Study on the input of earthquake ground motion for time history analysis of structures [J]. Journal of Building Structures, 1991, 12(2): 51―60. (in Chinese)
[13]  Luco N. Probabilistic seismic demand analysis, SMRF connection fractures, and near-source effects [D]. Stanford: Stanford University, 2001.
[14]  Katsanos E I, Sextos A G, Manolis G D. Selection of earthquake ground motion records: A state-of-the-art review from a structural engineering perspective [J]. Soil Dynamics and Earthquake Engineering, 2010, 30(4): 157―169.
[15]  叶列平, 马千里, 缪志伟. 结构抗震分析用地震动强度指标的研究[J]. 地震工程与工程振动, 2009, 29(4): 9―22.
[16]  韩建平, 吕西林, 李慧. 基于性能的地震工程研究的新进展及对结构非线性分析的要求[J]. 地震工程与工程振动, 2007, 27(4): 15―23.
[17]  Han Jianping, Lü Xilin, Li Hui. State-of-the-art of performance-based earthquake engineering and need for structural nonlinear analysis [J]. Earthquake Engineering and Engineering Vibration, 2007, 27(4): 15―23. (in Chinese)
[18]  Vamvatsikos D, Cornell C A. Incremental dynamic analysis [J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 491―514.
[19]  Seismosoft. SeismoStruct V6.5-A computer program for static and dynamic nonlinear analysis of framed structures [CP]. Pavia, Italy. http://www.seismosoft.com, 2013-07-19.
[20]  Cordova P P, Deierlein G G, Mehanny S S, et al. Development of a two-parameter seismic intensity measure and probabilistic assessment procedure [C]// Sapporo, Hokkaido: Proceedings of the 2nd U.S.-Japan Workshop on Performance-based Earthquake Engineering Methodology for Reinforced Concrete Building Structures, 2000: 187―206.
[21]  Inoue T. Seismic hazard analysis of multi-degree- of-freedom structures [R]. Report No. RMS-8. Stanford, CA: Stanford University, 1990.
[22]  Mehanny S S, Deierlein G G. Modeling and assessment of seismic performance of composite frames with reinforced concrete columns and steel beams [R]. Stanford: The John A. Blume Earthquake Engineering Center, Stanford University, 2000.
[23]  Vamvatsikos D, Cornell C A. Developing efficient scalar and vector intensity measures for IDA capacity estimation by incorporating elastic spectral shape information [J]. Earthquake Engineering and Structural Dynamics, 2005, 34(3): 1573―1600.
[24]  Bojórquez E, Iervolino I. Spectral shape proxies and nonlinear structural response [J]. Soil Dynamics and Earthquake Engineering, 2011, 31(7): 996―1008.
[25]  Bojórquez E, Iervolino I. A spectral shape-based scalar ground motion intensity measure for maximum and cumulative structural demands [C]// Ohrid, Republic of Macedonia: Proceedings of 14th European Conference on Earthquake Engineering, 2010: 158―165.
[26]  Baker J W, Cornell C A. Choice of a vector of ground motion intensity measures for seismic demand hazard analysis [C]// Vancouver, Canada: Proceedings of 13th World Conference on Earthquake Engineering, 2004: 3384.
[27]  Baker J W. Vector-valued ground motion intensity measures for probabilistic seismic demand analysis [D]. Stanford: Stanford University, 2005.
[28]  Mousavi M, Ghafory-Ashtiany M, Azarbakht A. A new indicator of elastic spectral shape for the reliable selection of ground motion records [J]. Earthquake Engineering and Structural Dynamics, 2011, 40(12): 1403―1416.
[29]  Baker J W. Conditional mean spectrum: Tool for ground motion selection [J]. ASCE Journal of Structural Engineering, 2011, 137(3): 322―331.
[30]  Kramer S L. Geotechnical earthquake engineering [M]. Prentice Hall: Upper Saddle River, NJ, 1996.
[31]  Bazzurro P, Cornell C A. On disaggregation of seismic hazard [J]. Bulletin of the Seismological Society of America, 1999, 89(2): 501―520.
[32]  McGuire R K. Probabilistic seismic hazard analysis and design earthquakes: closing the loop [J]. Bulletin of the Seismological Society of America, 1995, 85(5): 1257―1284.
[33]  Wang Gang. A ground motion selection and modification method capturing response spectrum characteristics and variability of scenario earthquakes [J]. Soil Dynamics and Earthquake Engineering, 2011, 31(4): 611―625.
[34]  David M Boore, Gail M Atkinson. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s [J]. Earthquake Spectra, 2008, 24(1): 99―138.
[35]  Mousavi M, Shahri M, Azarbakht A. E-CMS: A new design spectrum for nuclear structures in high levels of seismic hazard [J]. Nuclear Engineering and Design, 2012, 252: 27―33.
[36]  Iervolino I, Giorgio M, Galasso C, et al. Conditional hazard maps for secondary intensity measures [J]. Bulletin of the Seismological Society of America, 2010, 100(6): 3312―3319.
[37]  Cosenza E, Manfredi G. Damage indices and damage measures [J]. Progress in Structural Engineering and Materials, 2000, 2(1): 50―59.
[38]  Chioccarelli E, Esposito S, Iervolino I. Implementing conditional hazard for earthquake engineering practice: the Italian example [C]// Lisboa, PT: Proceedings of 15WCEE, 2012: 2883.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133