全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

基于镜像激励的结构动力学系统的设计点激励

DOI: 10.6052/j.issn.1000-4750.2014.03.0232, PP. 233-238

Keywords: 结构动力学,设计点激励,镜像激励,首穿失效概率,自由振动响应

Full-Text   Cite this paper   Add to My Lib

Abstract:

在随机振动及结构可靠性研究中,动力学系统的设计点激励有着不可替代的作用,但非线性动力学系统设计点激励的计算方法仍是当今研究者的焦点之一。该文利用振子自由振动响应的镜像激励,给出了高斯白噪声激励下非线性系统的设计点激励,并将其应用到首穿失效概率估计问题中,与原始的蒙特卡罗模拟相比较,两者体现了高度的一致性。为进一步说明该文方法的正确性,针对线性系统,利用解析方法获得设计点激励的准确值,利用镜像方法所得近似值,将其均应用到首穿失效概率的计算中,数值例子显示,两种方法所得设计点激励稍有不同,但在计算首穿失效概率时,展现出同样的有效性。

References

[1]  Der Kiureghian A. The geometry of random vibrations and solutions by FORM and SORM [J]. Probabilistic Engineering Mechanics, 2000(15): 81―90.
[2]  Au S K, Beck J L. First excursion probabilities for linear systems by very efficient importance sampling [J]. Probabilistic Engineering Mechanics, 2001, 16: 193―207.
[3]  Franchin P. Reliability of uncertain inelastic structures under earthquake excitation [J]. Journal Engineering Mechanics, ASCE, 2004, 130(2): 1―12.
[4]  Drenick R F. The critical excitation and nonlinear systems [J]. Journal Applied Mechanics ASME, 1977, 44: 333―336.
[5]  Iyengar R N, Manohar C S. Nonstationary random critical seismic excitations [J]. Journal Engineering Mechanics, ASCE, 1987, 113(4): 521―549.
[6]  Srinivasan M. Critical base excitations of structural systems [J]. Journal Engineering Mechanics, ASCE, 1991, 117(6): 1403―1422.
[7]  Takewaki I. Critical excitations for elastic-plastic structures via statistical equivalent linearization [J]. Probability Engineering Mechanics, 2002, 17: 73―84.
[8]  Heonsang Koo, Armen Der Kiureghian, Kazuya Fujimura. Design-point excitation for non-linear random vibrations [J]. Probabilistic Engineering Mechanics, 2005, 20: 136―147.
[9]  Au S K. Critical excitation of SDOF elasto-plastic systems [J]. Journal of Sound Vibration, 2006, 296: 714―733.
[10]  Crandall S H. Non-gaussian closure for random vibration of non-linear oscillators [J]. International Journal Nonlinear Mechanics, 1980, 15(4/5): 303―336.
[11]  Zuev K M, Katafygiotis L S. The horseracing simulation algorithm for evaluation of small failure probabilities [J]. Probabilistic Engineering Mechanics, 2011, 26(2): 157―164.
[12]  Valdebenito M A, Pradlwarter H J. The role of the design point for calculating failure probabilities in view of dimensionality and structural nonlinearities [J]. Structural Safety, 2010(32): 101―111.
[13]  Hasofer A M. Distribution of the maximum of Gaussian process by a Monte Carlo method [J]. Journal of Sound Vibration, 1987, 112: 283―293.
[14]  Grigoriu M. Simulation of non-stationary Gaussian processes by random trigonometric polynomials [J]. Journal Engineering Mechanics, ASCE, 1993, 119(2): 328―343.
[15]  Li C C, Der Kiureghian A. Optimal discretization of random fields [J]. Journal of Engineering Mechanics, ASCE, 1993, 119(2): 328―343.
[16]  任丽梅. 徐伟, 都琳. 非平稳地震作用下线性系统的首次穿越[J]. 工程力学, 2012, 44(3): 648―652.
[17]  Ren Limei, Xu Wei, Du Lin. First passage probabilities of dynamical systems subjected to non-stationary earthquake [J]. Engineering Mechanics, 2012, 44(3): 648―652. (in Chinese)

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133