全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

基于可靠度理论的桥梁涡激振动概率性评价

DOI: 10.6052/j.issn.1000-4750.2014.04.0280

Keywords: 大跨度桥梁,涡激共振,二次四阶矩法,失效模式,失效概率

Full-Text   Cite this paper   Add to My Lib

Abstract:

涡激共振是大跨度桥梁在低风速下容易发生的一种风致振动,涉及的不确定因素众多,利用可靠度理论对这类风致振动进行安全估算是大跨度桥梁风振研究的趋势。探讨了桥梁涡振的三种失效模式,包括基于涡振风速的失效模式、基于涡振振幅的失效模式和基于前两种失效模式交集的涡振刚度失效模式,基于此,以某座大跨度桥梁为例,应用二次四阶矩法计算了基于涡振振幅的失效概率,并与二次二阶矩法的计算结果进行了比较,用MonteCarlo模拟法(MC)进行了验证,发现基于二次四阶矩法的可靠度分析相对于二次二阶矩法具有较高的精度。然后,基于二次四阶矩法的计算结果得到了桥梁涡振刚度失效的概率,研究表明:单独考虑桥梁涡振发生风速或涡振振幅的失效概率偏于保守,应结合起来考虑。

References

[1]  白冰, 张清华, 李乔. 结构二次二阶矩可靠度指标的回归分析预测算法[J]. 工程力学, 2013, 30(10): 219―226.
[2]  Bai Bing, Zhang Qinghua, Li Qiao. Regression analysis-prediction algorithm for structural second-order second-moment reliability index evaluation [J]. Engineering Mechanics, 2013, 30(10): 219―226. (in Chinese)
[3]  Tagliani A. On the existence of maximum entropy distributions with four and more assigned moments [J]. Probabilistic Engineering Mechanics, 1990, 5(4): 167―170.
[4]  Zabarankin M, Uryasev S. Statistical decision problems [M]. New York: Springer, 2014: 53―54.
[5]  McLeish D. Simulating random variables using moment-generating functions and the saddle point approximation [J]. Journal of Statistical Computation and Simulation, 2014, 84(2): 324―334.
[6]  张明. 结构可靠度分析-方法与程序[M]. 北京: 科学出版社, 2009: 89―93.
[7]  Zhang Ming. Structure reliability analysis-methods and procedures [M]. Beijing: Science Press, 2009: 89―93. (in Chinese)
[8]  JTG/T D60-01-2004, 公路桥梁抗风设计规范[S]. 北京: 人民交通出版社, 2004.
[9]  JTG/T D60-01-2004, Wind-resistant design code for highway bridges [S]. Beijing: China Communications Press, 2004. (in Chinese)
[10]  李永君. 大跨度桥梁涡振二维计算模型及其实验研究[D]. 上海: 同济大学, 2004.
[11]  葛耀君. 大跨度桥梁抗风的技术挑战与精细化研究[J]. 工程力学, 2011, 28(增刊II): 11―23.
[12]  Ge Yaojun. Technical challenges and refinement research on wind resistance of long-span bridges [J]. Engineering Mechanics, 2011, 28(Suppl II): 11―23. (in Chinese)
[13]  肖军. 闭口流线型箱梁涡激力展向相关性研究[D]. 长沙: 湖南大学, 2012.
[14]  Xiao Jun. Study on spanwise correlation of vortex-induced force of a streamlined closed box girder [D]. Changsha: Hunan University, 2012. (in Chinese)
[15]  Vickery B J, Clark A W. Lift or across-wind response of tapered stacks [J]. Journal of the Structural Division, 1972, 98(1): 1―20.
[16]  Ehsan F, Scanlan R H. Vortex-induced vibration of flexible bridges [J]. Journal of Engineering Mechanics, ASCE, 1990, 116(6): 1392―1411.
[17]  Prenninger P H W. Reliability of bridge structures under wind loading: consideration of uncertainties of wind load parameters [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 33(1/2): 385―394.
[18]  葛耀君, 项海帆, 凌明, 等. 卢浦大桥风荷载及抗风稳定性研究[J]. 上海建设科技, 2004(1): 39―41.
[19]  Ge Yaojun, Xiang Haifan, Ling Ming, et al. Research on wind loading and wind-resistant stability of Lupu Bridge [J]. Shanghai Construction Science & Technology, 2004(1): 39―41. (in Chinese)
[20]  李立, 廖锦翔. 涡激振动问题的有限元计算研究[J]. 工程力学, 2003, 20(5): 200―203.
[21]  Li Li, Liao Jinxiang. Analysis of vortex-induced vibrations by finite element method [J]. Engineering Mechanics, 2003, 20(5): 200―203. (in Chinese)
[22]  Xu L, Cheng G D. Discussion on: moment methods for structural reliability [J]. Structural Safety, 2003, 25(3): 193―199.
[23]  Li Yongjun. Two-dimensional VIV model and experimental research for long-span bridge [D]. Shanghai: Tongji University, 2004. (in Chinese)
[24]  项海帆, 葛耀君, 朱乐东, 等. 现代桥梁抗风理论与实践[M]. 北京: 人民交通出版社, 2005: 282―285.
[25]  Xiang Haifan, Ge Yaojun, Zhu Ledong, et al. Modern theory and practice on bridge wind resistance [M]. Beijing: China Communication Press, 2005: 282―285. (in Chinese)
[26]  吴帅兵, 李典庆, 周创兵. 联合分布函数蒙特卡罗模拟及结构可靠度分析[J]. 工程力学, 2012, 29(9): 68―74. Wu Shuaibing, Li Dianqing, Zhou Chuangbing. Monte Carlo simulation of multivariate distribution and its application to structural reliability analysis [J]. Engineering Mechanics, 2012, 29(9): 68―74. (in Chinese)

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133