全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Gold Nanoparticles as Probes for Nano-Raman Spectroscopy: Preliminary Experimental Results and Modeling

DOI: 10.1155/2012/591083

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents an effective Tip-Enhanced Raman Spectrometer (TERS) in backscattering reflection configuration. It combines a tip-probe nanopositioning system with Raman spectroscope. Specific tips were processed by anchoring gold nanoparticles on the apex of tapered optical fibers, prepared by an improved chemical etching method. Hence, it is possible to expose a very small area of the sample (~20?nm2) to the very strong local electromagnetic field generated by the lightning rod effect. This experimental configuration was modelled and optimised using the finite element method, which takes into account electromagnetic effects as well as the plasmon resonance. Finally, TERS measurements on single-wall carbon nanotubes were successfully performed. These results confirm the high Raman scattering enhancement predicted by the modelling, induced by our new nano-Raman device. 1. Introduction The Raman effect is a well-known phenomenon of the inelastic diffusion of light, with change in the frequency of the incident radiation passing through materials or molecules. In the spectrum of the scattered light, new bands can be observed, and their energies are characteristic of the chemical nature of the investigated object. Raman spectroscopy is a useful tool, which is widely used in academic and industrial laboratories. This nondestructive spectroscopy provides structural information about various materials and can be exploited to build sensors that operate in different areas such as gas detection or bio- and chemical sensing. Generally, these equipments were built from an optical system that analyzes the diffusion of the light and transfers this information to spectroscopic detectors and finally to the electronic system for data processing. Nevertheless, the weakness of the signal does not allow the investigation of single molecules or individual nanoobjects. However, in the 70s, it was observed and proved [1–3] that Raman intensity can be strongly enhanced using a specific surface-sensitive technique based on the optical properties of noble metals, such as silver or gold. Nowadays, this phenomenon is well known and commonly called Surface Enhanced Raman Scattering (SERS) effect. This enhancement occurs for molecules adsorbed on rough metal surfaces or on metal nanoparticles. The main Raman enhancement contribution is attributed to the excitation of surface plasmons-polaritons resonances (collective oscillations of the electrons localised near the surface of metals) occurring near metallic nanostructures. The interaction of light with metallic nanoparticles is

References

[1]  M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” Journal of the American Chemical Society, vol. 99, no. 15, pp. 5215–5217, 1977.
[2]  M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chemical Physics Letters, vol. 26, no. 2, pp. 163–166, 1974.
[3]  D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry—part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” Journal of Electroanalytical Chemistry, vol. 84, no. 1, pp. 1–20, 1977.
[4]  K. Kneipp, Y. Wang, H. Kneipp et al., “Single molecule detection using surface-enhanced Raman scattering (SERS),” Physical Review Letters, vol. 78, no. 9, pp. 1667–1670, 1997.
[5]  S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science, vol. 275, no. 5303, pp. 1102–1106, 1997.
[6]  Z.-Y. Li and Y. Xia, “Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering,” Nano Letters, vol. 10, no. 1, pp. 243–249, 2010.
[7]  S. Rao, S. Raj, S. Balint et al., “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Applied Physics Letters, vol. 96, no. 21, Article ID 213701, 2010.
[8]  J. A. Creighton, C. G. Blatchford, and M. G. Albrecht, “Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength,” Journal of the Chemical Society, Faraday Transactions 2, vol. 75, pp. 790–798, 1979.
[9]  C. J. Orendorff, L. Gearheart, N. R. Jana, and C. J. Murphy, “Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates,” Physical Chemistry Chemical Physics, vol. 8, no. 1, pp. 165–170, 2006.
[10]  K. Faulds, R. E. Littleford, D. Graham, G. Dent, and W. E. Smith, “Comparison of surface-enhanced resonance Raman scattering from unaggregated and aggregated nanoparticles,” Analytical Chemistry, vol. 76, no. 3, pp. 592–598, 2004.
[11]  T. Makiabadi, A. Bouvrée, V. Le Nader, H. Terrisse, and G. Louarn, “Preparation, optimization, and characterization of SERS sensor substrates based on two-dimensional structures of gold colloid,” Plasmonics, vol. 5, no. 1, pp. 21–29, 2010.
[12]  J. T. Bahns, F. Yan, D. Qiu, R. Wang, and L. Chen, “Hole-enhanced raman scattering,” Applied Spectroscopy, vol. 60, no. 9, pp. 989–993, 2006.
[13]  L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge University Press, Cambridge, UK, 2006.
[14]  J. Wessel, “Surface-enhanced optical microscopy,” The Journal of the Optical Society of America, vol. 2, pp. 1538–1541, 1985.
[15]  S. L. Sharp, R. J. Warmack, J. P. Goudonnet, I. Lee, and T. L. Ferrell, “Spectroscopy and imaging using the photon scanning-tunneling microscope,” Accounts of Chemical Research, vol. 26, no. 7, pp. 377–382, 1993.
[16]  A. Hartschuh, M. R. Beversluis, A. Bouhelier, and L. Novotny, “Tip-enhanced optical spectroscopy,” Philosophical Transactions of the Royal Society A, vol. 362, no. 1817, pp. 807–819, 2004.
[17]  B. Pettinger, “Tip-Enhanced Raman Spectroscopy (TERS),” Topics in Applied Physics, vol. 103, pp. 217–240, 2006.
[18]  E. Bailo and V. Deckert, “Tip-enhanced Raman scattering,” Chemical Society Reviews, vol. 37, no. 5, pp. 921–930, 2008.
[19]  B. S. Yeo, J. Stadler, T. Schmid, R. Zenobi, and W. Zhang, “Tip-enhanced Raman spectroscopy—its status, challenges and future directions,” Chemical Physics Letters, vol. 472, no. 1–3, pp. 1–13, 2009.
[20]  R. Aroca, Surface-Enhanced Vibrational Spectroscopy, John Wiley and Sons, Chichester, UK, 2007.
[21]  C. Vannier, B. S. Yeo, J. Melanson, and R. Zenobi, “Multifunctional microscope for far-field and tip-enhanced Raman spectroscopy,” Review of Scientific Instruments, vol. 77, no. 2, article 023104, 2006.
[22]  W. Zhang, B. S. Yeo, T. Schmid, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” Journal of Physical Chemistry C, vol. 111, no. 4, pp. 1733–1738, 2007.
[23]  E. Bailo and V. Deckert, “Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method,” Angewandte Chemie, vol. 47, no. 9, pp. 1658–1661, 2008.
[24]  Y. Saito, P. Verma, K. Masui, Y. Inouye, and S. Kawata, “Nano-scale analysis of graphene layers by tip-enhanced near-field Raman spectroscopy,” Journal of Raman Spectroscopy, vol. 40, no. 10, pp. 1434–1440, 2009.
[25]  B. S. Yeo, E. Amstad, T. Schmid, J. Stadler, and R. Zenobi, “Nanoscale probing of a polymer-blend thin film with Tip-enhanced Raman spectroscopy,” Small, vol. 5, no. 8, pp. 952–960, 2009.
[26]  L. G. Can?ado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” Journal of Raman Spectroscopy, vol. 40, no. 10, pp. 1420–1426, 2009.
[27]  D. Mehtani, N. Lee, R. D. Hartschuh et al., “Nano-Raman spectroscopy with side-illumination optics,” Journal of Raman Spectroscopy, vol. 36, no. 11, pp. 1068–1075, 2005.
[28]  Y. Saito, M. Motohashi, N. Hayazawa, M. Iyoki, and S. Kawata, “Nanoscale characterization of strained silicon by tip-enhanced Raman spectroscope in reflection mode,” Applied Physics Letters, vol. 88, no. 14, Article ID 143109, 2006.
[29]  N. Lee, R. D. Hartschuh, D. Mehtani et al., “High contrast scanning nano-Raman spectroscopy of silicon,” Journal of Raman Spectroscopy, vol. 38, no. 6, Article ID 143109, pp. 789–796, 2007.
[30]  G. Picardi, Q. Nguyen, J. Schreiber, and R. Ossikovski, “Comparative study of atomic force mode and tunneling mode tip-enhanced Raman spectroscopy,” The European Physical Journal, vol. 40, no. 2, pp. 197–201, 2007.
[31]  P. G. Gucciardi, M. Lopes, R. Déturche, C. Julien, D. Barchiesi, and M. Lamy De La Chapelle, “Light depolarization induced by metallic tips in apertureless near-field optical microscopy and tip-enhanced Raman spectroscopy,” Nanotechnology, vol. 19, no. 21, Article ID 215702, 2008.
[32]  M. Motohashi, N. Hayazawa, A. Tarun, and S. Kawata, “Depolarization effect in reflection-mode tip-enhanced Raman scattering for Raman active crystals,” Journal of Applied Physics, vol. 103, no. 3, Article ID 034309, 2008.
[33]  A. Merlen, J. C. Valmalette, P. G. Gucciardi, M. Lamy de la Chapelle, A. Frigout, and R. Ossikovski, “Depolarization effects in tip-enhanced raman spectroscopy,” Journal of Raman Spectroscopy, vol. 40, no. 10, pp. 1361–1370, 2009.
[34]  B. Ren, G. Picardi, and B. Pettinger, “Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching,” Review of Scientific Instruments, vol. 75, no. 4, pp. 837–841, 2004.
[35]  C. C. Neacsu, S. Berweger, and M. B. Raschke, “Tip-enhanced raman imaging and nanospectroscopy: Sensitivity, symmetry, and selection rules,” Nanobiotechnology, vol. 3, no. 3-4, pp. 172–196, 2007.
[36]  C. Williams and D. Roy, “Fabrication of gold tips suitable for tip-enhanced Raman spectroscopy,” Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, vol. 26, no. 5, pp. 1761–1764, 2008.
[37]  R. M. St?ckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chemical Physics Letters, vol. 318, no. 1-3, pp. 131–136, 2000.
[38]  M. Chaigneau, G. Ollivier, T. Minea, and G. Louarn, “Nanoprobes for near-field optical microscopy manufactured by substitute-sheath etching and hollow cathode sputtering,” Review of Scientific Instruments, vol. 77, no. 10, Article ID 103702, 2006.
[39]  R. M. St?ckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chemical Physics Letters, vol. 318, no. 1–3, pp. 131–136, 2000.
[40]  S. S. Kharintsev, G. G. Hoffmann, P. S. Dorozhkin, G. De With, and J. Loos, “Atomic force and shear force based tip-enhanced Raman spectroscopy and imaging,” Nanotechnology, vol. 18, no. 31, Article ID 315502, 2007.
[41]  N. Anderson, A. Hartschuh, and L. Novotny, “Near-field Raman microscopy,” Materials Today, vol. 8, no. 5, pp. 50–54, 2005.
[42]  A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: Understanding tip-enhanced Raman scattering,” Journal of Chemical Physics, vol. 122, no. 18, Article ID 184716, pp. 1–7, 2005.
[43]  N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Applied Physics Letters, vol. 85, no. 25, pp. 6239–6241, 2004.
[44]  K. F. Domke and B. Pettinger, “Tip-enhanced Raman spectroscopy of 6H-SiC with graphene adlayers: selective suppression of E1 modes,” Journal of Raman Spectroscopy, vol. 40, no. 10, pp. 1427–1433, 2009.
[45]  W. X. Sun and Z. X. Shen, “Apertureless near-field scanning Raman microscopy using reflection scattering geometry,” Ultramicroscopy, vol. 94, no. 3-4, pp. 237–244, 2003.
[46]  D. Roy, J. Wang, and M. E. Welland, “Nanoscale imaging of carbon nanotubes using tip enhanced Raman spectroscopy in reflection mode,” Faraday Discussions, vol. 132, pp. 215–225, 2006.
[47]  R. J. C. Brown, J. Wang, R. Tantra, R. E. Yardley, and M. J. T. Milton, “Electromagnetic modelling of Raman enhancement from nanoscale substrates: A route to estimation of the magnitude of the chemical enhancement mechanism in SERS,” Faraday Discussions, vol. 132, pp. 201–213, 2006.
[48]  A. Jorio, M. A. Pimenta, A. G. Souza Filho, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, “Characterizing carbon nanotube samples with resonance Raman scattering,” New Journal of Physics, vol. 5, pp. 139.1–139.17, 2003.
[49]  N. Anderson, A. Hartschuh, S. Cronin, and L. Novotny, “Nanoscale vibrational analysis of single-walled carbon nanotubes,” Journal of the American Chemical Society, vol. 127, no. 8, pp. 2533–2537, 2005.
[50]  A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, and L. Novotny, “Nanoscale optical imaging of excitons in single-walled carbon nanotubes,” Nano Letters, vol. 5, no. 11, pp. 2310–2313, 2005.
[51]  N. Anderson, A. Hartschuh, and L. Novotny, “Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy,” Nano Letters, vol. 7, no. 3, pp. 577–582, 2007.
[52]  T. A. Yano, T. Ichimura, A. Taguchi et al., “Confinement of enhanced field investigated by tip-sample gap regulation in tapping-mode tip-enhanced Raman microscopy,” Applied Physics Letters, vol. 91, no. 12, Article ID 121101, 2007.
[53]  T. Schmid, A. Messmer, B. S. Yeo, W. Zhang, and R. Zenobi, “Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates,” Analytical and Bioanalytical Chemistry, vol. 391, no. 5, pp. 1907–1916, 2008.
[54]  A. Tarun, N. Hayazawa, M. Motohashi, and S. Kawata, “Highly efficient tip-enhanced Raman spectroscopy and microscopy of strained silicon,” Review of Scientific Instruments, vol. 79, no. 1, Article ID 013706, 2008.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133