全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于温度与应变率相互耦合的泡沫铝本构关系

DOI: 10.11858/gywlxb.2014.01.004, PP. 23-28

Keywords: 温度效应,应变率效应,泡沫铝,本构关系

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据分离式Hopkinson压杆实验以及准静态实验得到的泡沫铝材料在不同温度以及不同应变率下的应力-应变曲线,分析了泡沫铝本构方程中温度效应与应变率效应之间的耦合关系,即温度越高,泡沫铝的应变率效应越显著。基于Sherwood和Frost提出的泡沫材料本构关系框架,对常温下的应变率敏感系数进行了温度项修正,修正后的本构方程在高温高应变率下与实验结果具有较好的一致性。最终得到泡沫铝在一定密度范围内包含温度项、应变率项较为完备的本构方程。

References

[1]  Gibson L J, Ashby M F. Cellular Solids: Structure and Properties [M]. Cambridge, UK: Cambridge University Press, 1997: 175-231.
[2]  Evan A G, Hutchinson J W, Ashby M F. Multifunctionality of cellular metal systems [J]. Prog Mater Sci, 1998, 43(3): 171-221.
[3]  Wadley H N. Multifunctional periodic cellular metals [J]. Philos Trans A Math Phys Eng Sci, 2006, 364: 31-68.
[4]  Bigg D M. Predicting the shock mitigating properties of thermoplastic foams [J]. Polym Eng Sci, 1981, 21(9): 548-556.
[5]  Miltz J, Ramon O, Mizrahi S. Mechanical behavior of closed cell plastic foams used as cushioning materials [J]. J Appl Polym Sci, 1989, 38(2): 281-290.
[6]  Ramon O, Mizrahi S, Miltz J. Mechanical properties and behavior of open cell foams used as cushioning materials [J]. Polym Eng Sci, 1990, 30(4): 197-201.
[7]  Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the Seventh International Symposium on Ballistics. Hague, Netherlands, 1983: 541-547.
[8]  Rusch K C. Load-compression behavior of flexible foams [J]. J Appl Polym Sci, 1969, 13(11): 2297-2311.
[9]  Schwaber D M, Meinecke E A. Energy absorption in polymeric foams. Ⅱ. Prediction of impact behavior from instron data for foams with rate-dependent modulus [J]. J Appl Polym Sci, 1971, 15(10): 2381-2393.
[10]  Nagy A, Ko W L, Lindholm U S. Mechanical behavior of foamed materials under dynamic compression [J]. J Cell Plast, 1974, 10(3): 127-134.
[11]  Sherwood J A, Frost C C. Constitutive modeling and simulation of energy absorbing polyurethane foam under impact loading [J]. Polym Eng Sci, 1992, 32(16): 1138-1146.
[12]  Hu S S, Liu J F, Wang W. Study of the constitutive relationship of rigid polyurethane foam [J]. Acta Mechanica Sinica, 1998, 30(2): 151-156. (in Chinese)
[13]  胡时胜, 刘剑飞, 王梧. 硬质聚氨酯泡沫塑料本构关系的研究 [J]. 力学学报, 1998, 30(2): 151-156.
[14]  Liu Q L, Subhash G, Gao X L. A parametric study on crushability of open-cell structural polymeric foams [J]. J Porous Mater, 2005, 12(3): 233-248.
[15]  Chou C C, Zhao Y, Lim G G, et al. A constitutive model for polyurethane foams with strain-rate and temperature effects [C]//International Congress & Exposition Technical Papers. Michigan, USA, 1998: 743-754.
[16]  Wang Z H, Jing L, Zhao L M. Elasto-plastic constitutive model of aluminum alloy foam subjected to impact loading [J]. Trans Nonferrous Met Soc China, 2011, 21(3): 449-454.
[17]  Wang P F, Xu S L, Hu S S. Compressive behavior and deformation mechanism of aluminum foam under different temperature [J]. Journal of Vibration and Shock, 2013, 32(5): 16-19. (in Chinese)
[18]  王鹏飞, 徐松林, 胡时胜. 不同温度下泡沫铝压缩行为与变形机制探讨 [J]. 振动与冲击, 2013, 32(5): 16-19.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133